Influence of Well Pattern Type on Remaining Oil Saturation and Distribution after Development
The reservoir heterogeneity of Q oilfield is more severe after long-term water injection development, and water flooding is ineffective. In this study, the combined technologies of profile control, profile control and flooding, and oil displacement were proposed to improve the water flooding develop...
Saved in:
Published in | Energies (Basel) Vol. 15; no. 7; p. 2438 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.04.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The reservoir heterogeneity of Q oilfield is more severe after long-term water injection development, and water flooding is ineffective. In this study, the combined technologies of profile control, profile control and flooding, and oil displacement were proposed to improve the water flooding development effect. Then, the influence of the well pattern type on the remaining oil distribution, after development, was investigated. Cr3+ polymer gel, which has an optimal gel-forming effect, was used as the profile control agent. Moreover, the entire molecular structure had a “network” structure. A polymer microsphere was used as a profile control and flooding agent, which showed a good hydration expansion capacity. The initial particle size distribution had a range of 7.2–11.1 μm, and the expansion multiple was 4.35–5.64 after 7 days. The surfactant was an oil displacement agent, and the interfacial tension was approximately 5.08–5.11 × 10−1 mN/m. After the “profile control + profile control and flooding + oil displacement” technologies, the horizontal well pattern had a large seepage area. The effect of expanding the sweep volume was significant, and the remaining oil saturation in each stage was lower than those of the vertical and horizontal–vertical combined well patterns. Compared with the first water flooding stage, the remaining oil saturation values of the three permeable layers changed by 11.9%, 17.3%, and 19.8% during the subsequent water flooding stage. |
---|---|
ISSN: | 1996-1073 1996-1073 |
DOI: | 10.3390/en15072438 |