Serum copper concentration as an index of lung injury in rats exposed to hemithorax irradiation

Serum copper concentration was evaluated as an index of lung injury (monitored by lung prostacyclin production) with respect to the effects of time, dose, dose fractionation, and penicillamine dose modification in rats irradiated to the right hemithorax. Both lung PGI2 production and serum Cu concen...

Full description

Saved in:
Bibliographic Details
Published inRadiation research Vol. 114; no. 3; p. 613
Main Authors Ward, W F, Molteni, A, Fitzsimons, E J, Hinz, J
Format Journal Article
LanguageEnglish
Published United States 01.06.1988
Subjects
Online AccessGet more information

Cover

Loading…
More Information
Summary:Serum copper concentration was evaluated as an index of lung injury (monitored by lung prostacyclin production) with respect to the effects of time, dose, dose fractionation, and penicillamine dose modification in rats irradiated to the right hemithorax. Both lung PGI2 production and serum Cu concentration increased with increasing 60Co gamma-ray dose in animals sacrificed 2 or 6 months postirradiation, and the highest values for both responses were observed at the latter autopsy time. At 2 months postirradiation, the elevations in lung PGI2 production and serum Cu concentration also were spared similarly when total radiation doses were delivered in five equal daily fractions as compared to single doses. Finally, the ability of D-penicillamine to ameliorate the radiation-induced hyperproduction of PGI2 by rat lung was accompanied by an attenuation of the dose-dependent increase in serum Cu concentration at 2 months postirradiation in the drug-treated rats. In contrast, serum iron concentration was independent of time, dose, and penicillamine. At 2 months after irradiation, there also was a dose-dependent increase in lung hydroxyproline (collagen) content, the magnitude of which correlated closely with serum copper concentration in individual animals. Thus serum copper concentration is an accurate and minimally invasive index of lung injury in rats irradiated to the hemithorax and can predict lung hydroxyproline (collagen) content in individual irradiated rats.
ISSN:0033-7587
DOI:10.2307/3577131