Low Rank Component Induced Spatial-Spectral Kernel Method for Hyperspectral Image Classification
Kernel methods, e.g., composite kernels (CKs) and spatial-spectral kernels (SSKs), have been demonstrated to be an effective way to exploit the spatial-spectral information nonlinearly for improving the classification performance of hyperspectral image (HSI). However, these methods are always conduc...
Saved in:
Published in | IEEE transactions on circuits and systems for video technology Vol. 30; no. 10; pp. 3829 - 3842 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.10.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Kernel methods, e.g., composite kernels (CKs) and spatial-spectral kernels (SSKs), have been demonstrated to be an effective way to exploit the spatial-spectral information nonlinearly for improving the classification performance of hyperspectral image (HSI). However, these methods are always conducted with square-shaped window or superpixel techniques. Both techniques are likely to misclassify the pixels that lie at the boundaries of class, and thus a small target is always smoothed away. To alleviate these problems, in this paper, we propose a novel patch-based low rank component induced spatial-spectral kernel method, termed LRCISSK, for HSI classification. First, the latent low-rank features of spectra in each cubic patch of HSI are reconstructed by a low rank matrix recovery (LRMR) technique, and then, to further explore more accurate spatial information, they are used to identify a homogeneous neighborhood for the target pixel (i.e., the centroid pixel) adaptively. Finally, the adaptively identified homogenous neighborhood which consists of the latent low-rank spectra is embedded into the spatial-spectral kernel framework. It can easily map the spectra into the nonlinearly complex manifolds and enable a classifier (e.g., support vector machine, SVM) to distinguish them effectively. Experimental results on three real HSI datasets validate that the proposed LRCISSK method can effectively explore the spatial-spectral information and deliver superior performance with at least 1.30% higher OA and 1.03% higher AA on average when compared to other state-of-the-art classifiers. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 1051-8215 1558-2205 |
DOI: | 10.1109/TCSVT.2019.2946723 |