Low Rank Component Induced Spatial-Spectral Kernel Method for Hyperspectral Image Classification

Kernel methods, e.g., composite kernels (CKs) and spatial-spectral kernels (SSKs), have been demonstrated to be an effective way to exploit the spatial-spectral information nonlinearly for improving the classification performance of hyperspectral image (HSI). However, these methods are always conduc...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on circuits and systems for video technology Vol. 30; no. 10; pp. 3829 - 3842
Main Authors Sun, Le, Ma, Chenyang, Chen, Yunjie, Zheng, Yuhui, Shim, Hiuk Jae, Wu, Zebin, Jeon, Byeungwoo
Format Journal Article
LanguageEnglish
Published New York IEEE 01.10.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Kernel methods, e.g., composite kernels (CKs) and spatial-spectral kernels (SSKs), have been demonstrated to be an effective way to exploit the spatial-spectral information nonlinearly for improving the classification performance of hyperspectral image (HSI). However, these methods are always conducted with square-shaped window or superpixel techniques. Both techniques are likely to misclassify the pixels that lie at the boundaries of class, and thus a small target is always smoothed away. To alleviate these problems, in this paper, we propose a novel patch-based low rank component induced spatial-spectral kernel method, termed LRCISSK, for HSI classification. First, the latent low-rank features of spectra in each cubic patch of HSI are reconstructed by a low rank matrix recovery (LRMR) technique, and then, to further explore more accurate spatial information, they are used to identify a homogeneous neighborhood for the target pixel (i.e., the centroid pixel) adaptively. Finally, the adaptively identified homogenous neighborhood which consists of the latent low-rank spectra is embedded into the spatial-spectral kernel framework. It can easily map the spectra into the nonlinearly complex manifolds and enable a classifier (e.g., support vector machine, SVM) to distinguish them effectively. Experimental results on three real HSI datasets validate that the proposed LRCISSK method can effectively explore the spatial-spectral information and deliver superior performance with at least 1.30% higher OA and 1.03% higher AA on average when compared to other state-of-the-art classifiers.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1051-8215
1558-2205
DOI:10.1109/TCSVT.2019.2946723