Centrifugally Spun α-Fe2O3/TiO2/Carbon Composite Fibers as Anode Materials for Lithium-Ion Batteries

We report results on the electrochemical performance of flexible and binder-free α-Fe2O3/TiO2/carbon composite fiber anodes for lithium-ion batteries (LIBs). The composite fibers were produced via centrifugal spinning and subsequent thermal processing. The fibers were prepared from a precursor solut...

Full description

Saved in:
Bibliographic Details
Published inApplied sciences Vol. 9; no. 19; p. 4032
Main Authors Zuniga, Luis, Gonzalez, Gabriel, Orrostieta Chavez, Roberto, Myers, Jason C., Lodge, Timothy P., Alcoutlabi, Mataz
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.10.2019
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We report results on the electrochemical performance of flexible and binder-free α-Fe2O3/TiO2/carbon composite fiber anodes for lithium-ion batteries (LIBs). The composite fibers were produced via centrifugal spinning and subsequent thermal processing. The fibers were prepared from a precursor solution containing PVP/iron (III) acetylacetonate/titanium (IV) butoxide/ethanol/acetic acid followed by oxidation at 200 °C in air and then carbonization at 550 °C under flowing argon. The morphology and structure of the composite fibers were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), and thermogravimetric analysis (TGA). These ternary composite fiber anodes showed an improved electrochemical performance compared to the pristine TiO2/C and α-Fe2O3/C composite fiber electrodes. The α-Fe2O3/TiO2/C composite fibers also showed a superior cycling performance with a specific capacity of 340 mAh g−1 after 100 cycles at a current density of 100 mA g−1, compared to 61 mAh g−1 and 121 mAh g−1 for TiO2/C and α-Fe2O3/C composite electrodes, respectively. The improved electrochemical performance and the simple processing of these metal oxide/carbon composite fibers make them promising candidates for the next generation and cost-effective flexible binder-free anodes for LIBs.
ISSN:2076-3417
2076-3417
DOI:10.3390/app9194032