Highly parallel scanning tunneling microscope based hydrogen depassivation lithography

Hydrogen depassivation lithography (HDL) carried out by a scanning tunneling microscope has sub-nm resolution and the potential to create atomically precise patterns. However, as a serial write tool, it is subject to Tennant’s law which fairly accurately predicts an extremely low areal throughput in...

Full description

Saved in:
Bibliographic Details
Published inJournal of vacuum science and technology. B, Nanotechnology & microelectronics Vol. 36; no. 6
Main Authors Randall, John N., Owen, James H. G., Lake, Joseph, Saini, Rahul, Fuchs, Ehud, Mahdavi, Mohammad, Moheimani, S. O. Reza, Schaefer, Benjamin Carrion
Format Journal Article
LanguageEnglish
Published United States American Vacuum Society 01.11.2018
Online AccessGet full text
ISSN2166-2746
2166-2754
DOI10.1116/1.5047939

Cover

Loading…
Abstract Hydrogen depassivation lithography (HDL) carried out by a scanning tunneling microscope has sub-nm resolution and the potential to create atomically precise patterns. However, as a serial write tool, it is subject to Tennant’s law which fairly accurately predicts an extremely low areal throughput in line with their experimental results. In order to improve the throughput, the authors explore the feasibility of an approach to develop a highly parallel exposure system, which preserves the ability to perform truly atomically precise patterning. The obvious way to increase scanning probe lithography throughput is to increase the number of probes. In this paper, they compare existing multiple scanning probe systems [D. S. Ginger, H. Zhang, and C. A. Mirkin, Angew. Chem. Int. Ed. 43, 30 (2004) and P. Vettiger et al., Microelectronic 46, 11 (1999)] with their proposed highly parallel, MEMS-based scanners with three degrees of freedom (3 DoF) movement. Additionally, since HDL is a version of e-beam lithography, they examine the problems encountered by the attempts to go parallel with conventional e-beam lithography and why highly parallel HDL avoids these physical and engineering problems. While there are still some engineering challenges to be met, the path to massively parallel HDL tip arrays is relatively straightforward. They believe that 3 DoF MEMS-based independently controlled scanners could be placed with a density of 10 100/cm2. That density range implies 7 × 106 tips on a 300 mm wafer. However, they do want to make clear that they do not contend that even this level of parallelism will make HDL a contender for producing CMOS consumer electronics.
AbstractList Hydrogen depassivation lithography (HDL) carried out by a scanning tunneling microscope has sub-nm resolution and the potential to create atomically precise patterns. However, as a serial write tool, it is subject to Tennant’s law which fairly accurately predicts an extremely low areal throughput in line with their experimental results. In order to improve the throughput, the authors explore the feasibility of an approach to develop a highly parallel exposure system, which preserves the ability to perform truly atomically precise patterning. The obvious way to increase scanning probe lithography throughput is to increase the number of probes. In this paper, they compare existing multiple scanning probe systems [D. S. Ginger, H. Zhang, and C. A. Mirkin, Angew. Chem. Int. Ed. 43, 30 (2004) and P. Vettiger et al., Microelectronic 46, 11 (1999)] with their proposed highly parallel, MEMS-based scanners with three degrees of freedom (3 DoF) movement. Additionally, since HDL is a version of e-beam lithography, they examine the problems encountered by the attempts to go parallel with conventional e-beam lithography and why highly parallel HDL avoids these physical and engineering problems. While there are still some engineering challenges to be met, the path to massively parallel HDL tip arrays is relatively straightforward. They believe that 3 DoF MEMS-based independently controlled scanners could be placed with a density of 10 100/cm2. That density range implies 7 × 106 tips on a 300 mm wafer. However, they do want to make clear that they do not contend that even this level of parallelism will make HDL a contender for producing CMOS consumer electronics.
Author Mahdavi, Mohammad
Schaefer, Benjamin Carrion
Fuchs, Ehud
Saini, Rahul
Lake, Joseph
Owen, James H. G.
Moheimani, S. O. Reza
Randall, John N.
Author_xml – sequence: 1
  givenname: John N.
  surname: Randall
  fullname: Randall, John N.
  email: jrandall@zyvexlabs.com
  organization: Zyvex Labs
– sequence: 2
  givenname: James H. G.
  surname: Owen
  fullname: Owen, James H. G.
  organization: Zyvex Labs
– sequence: 3
  givenname: Joseph
  surname: Lake
  fullname: Lake, Joseph
  organization: Zyvex Labs
– sequence: 4
  givenname: Rahul
  surname: Saini
  fullname: Saini, Rahul
  organization: Zyvex Labs
– sequence: 5
  givenname: Ehud
  surname: Fuchs
  fullname: Fuchs, Ehud
  organization: Zyvex Labs
– sequence: 6
  givenname: Mohammad
  surname: Mahdavi
  fullname: Mahdavi, Mohammad
  organization: Systems Engineering Department, University of Texas at Dallas
– sequence: 7
  givenname: S. O. Reza
  surname: Moheimani
  fullname: Moheimani, S. O. Reza
  organization: Systems Engineering Department, University of Texas at Dallas
– sequence: 8
  givenname: Benjamin Carrion
  surname: Schaefer
  fullname: Schaefer, Benjamin Carrion
  organization: Electrical Engineering Department, University of Texas at Dallas
BackLink https://www.osti.gov/biblio/1479598$$D View this record in Osti.gov
BookMark eNqdkMFLwzAUxoNMcM4d_A-KN4VuSZOm6VGGOmHgRb2GNE3WSJaUpA7639u6qSCefJf3Pfi9j_e-czBx3ikALhFcIIToEi1ySIoSlydgmiFK06zIyeRbE3oG5jG-waEoyyGGU_C6NtvG9kkrgrBW2SRK4Zxx26R7d07ZUe2MDD5K36qkElHVSdPXwW-VS2rVihjNXnTGu8SarvHbINqmvwCnWtio5sc-Ay_3d8-rdbp5enhc3W5SiSnqUlIKUuFca4q1IoyxAkORyYwohgqBcEklGcYaE6wLwVilJYUawgpmSOCa4Rm4Ovj62BkepemUbKQfLpcdR0MWeTlCywM0vhGD0nzgPk_ugjCWI8jH-Djix_iGjetfG20wOxH6P9mbAxu_XP8H7334AXlba_wBBWmOKw
CODEN JVTBD9
CitedBy_id crossref_primary_10_1016_j_cplett_2021_139258
crossref_primary_10_1116_6_0000241
crossref_primary_10_1116_6_0002486
crossref_primary_10_1109_JMEMS_2021_3052180
crossref_primary_10_1116_1_5119392
crossref_primary_10_1103_PhysRevB_103_165127
crossref_primary_10_1116_6_0001107
crossref_primary_10_1088_2631_7990_ac3bb2
crossref_primary_10_1103_PhysRevMaterials_9_026201
crossref_primary_10_1038_s41467_022_35048_0
crossref_primary_10_1557_s43577_021_00139_8
crossref_primary_10_3390_mi13020228
Cites_doi 10.1063/1.338189
10.1116/1.4823756
10.1143/JJAP.45.8972
10.1147/rd.305.0460
10.1116/1.4813761
10.1116/1.3610955
10.1109/TCST.2018.2844781
10.1109/TADVP.2007.901643
10.1016/j.mee.2009.11.143
10.1116/1.3237096
10.1109/IEDM.2015.7409608
10.1016/S0167-9317(98)00034-3
10.1103/PhysRevLett.80.1336
10.1038/ncomms1907
10.1063/1.2198536
10.1109/TRANSDUCERS.2011.5969891
10.1063/1.5003851
ContentType Journal Article
Copyright Author(s)
Copyright_xml – notice: Author(s)
DBID AAYXX
CITATION
OTOTI
DOI 10.1116/1.5047939
DatabaseName CrossRef
OSTI.GOV
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2166-2754
ExternalDocumentID 1479598
10_1116_1_5047939
GrantInformation_xml – fundername: Defense Advanced Research Projects Agency
  grantid: FA8650-15-C-7542
  funderid: http://dx.doi.org/10.13039/100000185
– fundername: Army Research Office
  grantid: W911NF-13-1-0470
  funderid: http://dx.doi.org/10.13039/100000183
– fundername: U.S. Department of Energy
  grantid: DE-EE0008322
  funderid: http://dx.doi.org/10.13039/100000015
GroupedDBID .DC
AAAAW
AAEUA
AAPUP
AAYIH
ABNAN
ACBRY
ACGFS
ADLOM
AFHCQ
AGKCL
AGTJO
AGVCI
ALMA_UNASSIGNED_HOLDINGS
ARCSS
EBS
EJD
M71
RIP
RNS
RQS
VAS
AAGWI
AAYXX
ABJGX
ADMLS
CITATION
AQWKA
OTOTI
UG7
ID FETCH-LOGICAL-c361t-49a4b35ff63fe4888730a2c24e817a1396c42c2d343f7a88bfc60f00b021a3d83
ISSN 2166-2746
IngestDate Mon May 01 23:02:00 EDT 2023
Thu Apr 24 23:05:09 EDT 2025
Tue Jul 01 02:43:45 EDT 2025
Fri Jun 21 00:15:57 EDT 2024
Sun Jul 14 18:01:18 EDT 2019
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License Published by the AVS.
2166-2746/2018/36(6)/06JL05/11/$30.00
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c361t-49a4b35ff63fe4888730a2c24e817a1396c42c2d343f7a88bfc60f00b021a3d83
Notes USDOE
EE0008322
OpenAccessLink https://www.osti.gov/biblio/1479598
PageCount 11
ParticipantIDs scitation_primary_10_1116_1_5047939
crossref_primary_10_1116_1_5047939
crossref_citationtrail_10_1116_1_5047939
osti_scitechconnect_1479598
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20181100
2018-11-01
PublicationDateYYYYMMDD 2018-11-01
PublicationDate_xml – month: 11
  year: 2018
  text: 20181100
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of vacuum science and technology. B, Nanotechnology & microelectronics
PublicationYear 2018
Publisher American Vacuum Society
Publisher_xml – name: American Vacuum Society
References Tennant (c4) 2013
Ballard, Sisson, Owen, Owen, Fuchs, Alexander, Randall, Von Ehr (c7) 2013
Randall, Ballard, Lyding, Schmucker, Von Ehr, Saini, Xu, Ding (c6) 2010
Randall, Lyding, Schmucker, Von Ehr, Ballard, Saini, Ding (c5) 2009
Li, Pradeep, Chikkamaranahalli, Stan, Attota, Fu, Silver (c26) 2011
Foley, Kam, Lyding, Avouris (c9) 1998
Rezeq, Pitters, Wolkow (c22) 2006
Tajaddodianfar, Moheimani, Owen, Randall (c18) 2018
Schmucker (c24) 2012
Bernstein, Liu, Yan, Sun, Kopp, Porod, Snider, Fay (c29) 2007
Kuo, Hwang, Fu, Lin, Chang, Tsong (c23) 2006
Hansma, Tersoff (c21) 1987
Fink (c20) 1986
Tajaddodianfar, Moheimani, Randall (c19) 2018
Liddle, Blakey, Knurek, Mkrtchyan, Novembre, Ocola, Saunders, Waskiewicz (c14) 1998
Sarkar, Mansour, Patange, Trainor (c12) 2011
(2023071607360987800_c5) 2009; 27
(2023071607360987800_c20) 1986; 30
2023071607360987800_c11
2023071607360987800_c10
2023071607360987800_c30
(2023071607360987800_c7) 2013; 31
(2023071607360987800_c24) 2012; 3
2023071607360987800_c25
(2023071607360987800_c18) 2018; 89
2023071607360987800_c28
2023071607360987800_c27
(2023071607360987800_c22) 2006; 124
(2023071607360987800_c9) 1998; 80
(2023071607360987800_c14) 1998; 41–42
(2023071607360987800_c19) 2018; 1
(2023071607360987800_c12) 2011; 2011
2023071607360987800_c8
(2023071607360987800_c29) 2007; 30
(2023071607360987800_c4) 2013; 31
(2023071607360987800_c6) 2010; 87
2023071607360987800_c1
2023071607360987800_c15
2023071607360987800_c2
2023071607360987800_c13
(2023071607360987800_c21) 1987; 61
(2023071607360987800_c23) 2006; 45
2023071607360987800_c17
(2023071607360987800_c26) 2011; 29
(2023071607360987800_c3) 1999
2023071607360987800_c16
References_xml – start-page: 155
  year: 1998
  ident: c14
  publication-title: Microelectron. Eng.
– start-page: 06FC01
  year: 2013
  ident: c7
  publication-title: J. Vac. Sci. Technol. B
– year: 2018
  ident: c19
  publication-title: IEEE Trans. Control Syst. Technol.
– start-page: 2610
  year: 2011
  ident: c12
  publication-title: Transducers
– start-page: 8972
  year: 2006
  ident: c23
  publication-title: Jpn. J. Appl. Phys.
– start-page: 013701
  year: 2018
  ident: c18
  publication-title: Rev. Sci. Instrum.
– start-page: 204716
  year: 2006
  ident: c22
  publication-title: J. Chem. Phys.
– start-page: 050813
  year: 2013
  ident: c4
  publication-title: J. Vac. Sci. Technol. A
– start-page: 955
  year: 2010
  ident: c6
  publication-title: Microelectron. Eng.
– start-page: 731
  year: 2007
  ident: c29
  publication-title: IEEE Trans. Adv. Packag.
– start-page: 935
  year: 2012
  ident: c24
  publication-title: Nat. Commun.
– start-page: 460
  year: 1986
  ident: c20
  publication-title: IBM J. Res. Dev.
– year: 1987
  ident: c21
  publication-title: J. Appl. Phys.
– start-page: 041806
  year: 2011
  ident: c26
  publication-title: J. Vac. Sci. Technol. B
– start-page: 2764
  year: 2009
  ident: c5
  publication-title: J. Vac. Sci. Technol. B
– start-page: 1336
  year: 1998
  ident: c9
  publication-title: Phys. Rev. Lett.
– ident: 2023071607360987800_c13
– volume: 61
  year: 1987
  ident: 2023071607360987800_c21
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.338189
– ident: 2023071607360987800_c15
– ident: 2023071607360987800_c17
– volume: 31
  start-page: 06FC01
  year: 2013
  ident: 2023071607360987800_c7
  publication-title: J. Vac. Sci. Technol. B
  doi: 10.1116/1.4823756
– ident: 2023071607360987800_c30
– volume: 45
  start-page: 8972
  year: 2006
  ident: 2023071607360987800_c23
  publication-title: Jpn. J. Appl. Phys.
  doi: 10.1143/JJAP.45.8972
– ident: 2023071607360987800_c28
– volume: 30
  start-page: 460
  year: 1986
  ident: 2023071607360987800_c20
  publication-title: IBM J. Res. Dev.
  doi: 10.1147/rd.305.0460
– ident: 2023071607360987800_c2
– volume: 31
  start-page: 050813
  year: 2013
  ident: 2023071607360987800_c4
  publication-title: J. Vac. Sci. Technol. A
  doi: 10.1116/1.4813761
– volume: 29
  start-page: 041806
  year: 2011
  ident: 2023071607360987800_c26
  publication-title: J. Vac. Sci. Technol. B
  doi: 10.1116/1.3610955
– ident: 2023071607360987800_c10
– ident: 2023071607360987800_c16
– volume: 1
  year: 2018
  ident: 2023071607360987800_c19
  publication-title: IEEE Trans. Control Syst. Technol.
  doi: 10.1109/TCST.2018.2844781
– volume: 30
  start-page: 731
  year: 2007
  ident: 2023071607360987800_c29
  publication-title: IEEE Trans. Adv. Packag.
  doi: 10.1109/TADVP.2007.901643
– volume: 87
  start-page: 955
  year: 2010
  ident: 2023071607360987800_c6
  publication-title: Microelectron. Eng.
  doi: 10.1016/j.mee.2009.11.143
– volume: 27
  start-page: 2764
  year: 2009
  ident: 2023071607360987800_c5
  publication-title: J. Vac. Sci. Technol. B
  doi: 10.1116/1.3237096
– volume-title: 2015 IEDM
  ident: 2023071607360987800_c1
  doi: 10.1109/IEDM.2015.7409608
– volume: 41–42
  start-page: 155
  year: 1998
  ident: 2023071607360987800_c14
  publication-title: Microelectron. Eng.
  doi: 10.1016/S0167-9317(98)00034-3
– ident: 2023071607360987800_c8
– volume: 80
  start-page: 1336
  year: 1998
  ident: 2023071607360987800_c9
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.80.1336
– volume: 3
  start-page: 935
  year: 2012
  ident: 2023071607360987800_c24
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms1907
– ident: 2023071607360987800_c27
– volume: 124
  start-page: 204716
  year: 2006
  ident: 2023071607360987800_c22
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2198536
– start-page: 164
  volume-title: Nanotechnology
  year: 1999
  ident: 2023071607360987800_c3
– ident: 2023071607360987800_c25
– volume-title: 2011 16th International Solid-State Sensors, Actuators Microsystems Conference
  ident: 2023071607360987800_c11
  doi: 10.1109/TRANSDUCERS.2011.5969891
– volume: 2011
  start-page: 2610
  year: 2011
  ident: 2023071607360987800_c12
  publication-title: Transducers
– volume: 89
  start-page: 013701
  year: 2018
  ident: 2023071607360987800_c18
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.5003851
SSID ssj0000685030
Score 2.3482146
Snippet Hydrogen depassivation lithography (HDL) carried out by a scanning tunneling microscope has sub-nm resolution and the potential to create atomically precise...
SourceID osti
crossref
scitation
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
Title Highly parallel scanning tunneling microscope based hydrogen depassivation lithography
URI http://dx.doi.org/10.1116/1.5047939
https://www.osti.gov/biblio/1479598
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaW7QF6QDzFUkAWcECKsiSx43iP5blCbS-0VW-R7STaA91Uq6QI_gh_l5nYcVJYKuASZb2Wk5351h6Pv5kh5CWrslKWKWY-1kXIY6VDrRUPM7Vghku9iEt06B8eieUJ_3SWnk0mP0aspbbRc_N9a1zJ_2gV2kCvGCX7D5r1g0ID3IN-4Qoahutf6RhJGuidUBusiILRjbYCUdC0SF_Bu3Mk3HWhJwEuWEWw-lZsahgRObBgOLviZhiKvBpnr_7dXr1Upm3Pgz4OqGNeer_8PHjj5up6aOxg1b3AUGxnoNajC8MxbJC9czT3_t6vLmAECbzBch589F8dKJcf1J5b9N4hrHLRYUWtHM_R-TFi6QL6PPL6A6pT-2scaXWYDpNYiBD20C5x9rjNpqHu53ObUMXhVvxhmeg8FvMUE-zbZEq_ZN2OORZhlzfITgL7j2hKdvbfHR589u67SMg06irZ-Pdyeatg7Nd-5CvWzrSGWXuX3ARFWZrFyJI5vkNuO5XSfYunu2RSru-R3VFiyvvk1CKL9siiPbKoRxYdkEU7ZNEeWfQKsugIWQ_IyYf3x2-XoavAERom4ibkC8U1S6tKsKqEqV7CeqASk_BSxpmCzYMwHD4WjMN_XkmpKyOiKoo0WI6KFZI9JNN1vS4fERoxoyIFy0fGKp6qQqcg1oppPOhNeJHNyKteUnkvH6yS8iW321SRx7kT6ow8910vbE6WbZ32UNw5Chtwb5A2Zprc6XVGXngtXDfGll6X9WbokV8U1eNrn7RHbg1of0KmzaYtn4Id2-hnDlM_AR2yoow
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Highly+parallel+scanning+tunneling+microscope+based+hydrogen+depassivation+lithography&rft.jtitle=Journal+of+vacuum+science+and+technology.+B%2C+Nanotechnology+%26+microelectronics&rft.au=Randall%2C+John+N.&rft.au=Owen%2C+James+H.+G.&rft.au=Lake%2C+Joseph&rft.au=Saini%2C+Rahul&rft.date=2018-11-01&rft.pub=American+Vacuum+Society&rft.issn=2166-2746&rft.eissn=2166-2754&rft.volume=36&rft.issue=6&rft_id=info:doi/10.1116%2F1.5047939&rft.externalDocID=1479598
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2166-2746&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2166-2746&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2166-2746&client=summon