Highly parallel scanning tunneling microscope based hydrogen depassivation lithography
Hydrogen depassivation lithography (HDL) carried out by a scanning tunneling microscope has sub-nm resolution and the potential to create atomically precise patterns. However, as a serial write tool, it is subject to Tennant’s law which fairly accurately predicts an extremely low areal throughput in...
Saved in:
Published in | Journal of vacuum science and technology. B, Nanotechnology & microelectronics Vol. 36; no. 6 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Vacuum Society
01.11.2018
|
Online Access | Get full text |
ISSN | 2166-2746 2166-2754 |
DOI | 10.1116/1.5047939 |
Cover
Loading…
Abstract | Hydrogen depassivation lithography (HDL) carried out by a scanning tunneling microscope has sub-nm resolution and the potential to create atomically precise patterns. However, as a serial write tool, it is subject to Tennant’s law which fairly accurately predicts an extremely low areal throughput in line with their experimental results. In order to improve the throughput, the authors explore the feasibility of an approach to develop a highly parallel exposure system, which preserves the ability to perform truly atomically precise patterning. The obvious way to increase scanning probe lithography throughput is to increase the number of probes. In this paper, they compare existing multiple scanning probe systems [D. S. Ginger, H. Zhang, and C. A. Mirkin, Angew. Chem. Int. Ed. 43, 30 (2004) and P. Vettiger et al., Microelectronic 46, 11 (1999)] with their proposed highly parallel, MEMS-based scanners with three degrees of freedom (3 DoF) movement. Additionally, since HDL is a version of e-beam lithography, they examine the problems encountered by the attempts to go parallel with conventional e-beam lithography and why highly parallel HDL avoids these physical and engineering problems. While there are still some engineering challenges to be met, the path to massively parallel HDL tip arrays is relatively straightforward. They believe that 3 DoF MEMS-based independently controlled scanners could be placed with a density of 10 100/cm2. That density range implies 7 × 106 tips on a 300 mm wafer. However, they do want to make clear that they do not contend that even this level of parallelism will make HDL a contender for producing CMOS consumer electronics. |
---|---|
AbstractList | Hydrogen depassivation lithography (HDL) carried out by a scanning tunneling microscope has sub-nm resolution and the potential to create atomically precise patterns. However, as a serial write tool, it is subject to Tennant’s law which fairly accurately predicts an extremely low areal throughput in line with their experimental results. In order to improve the throughput, the authors explore the feasibility of an approach to develop a highly parallel exposure system, which preserves the ability to perform truly atomically precise patterning. The obvious way to increase scanning probe lithography throughput is to increase the number of probes. In this paper, they compare existing multiple scanning probe systems [D. S. Ginger, H. Zhang, and C. A. Mirkin, Angew. Chem. Int. Ed. 43, 30 (2004) and P. Vettiger et al., Microelectronic 46, 11 (1999)] with their proposed highly parallel, MEMS-based scanners with three degrees of freedom (3 DoF) movement. Additionally, since HDL is a version of e-beam lithography, they examine the problems encountered by the attempts to go parallel with conventional e-beam lithography and why highly parallel HDL avoids these physical and engineering problems. While there are still some engineering challenges to be met, the path to massively parallel HDL tip arrays is relatively straightforward. They believe that 3 DoF MEMS-based independently controlled scanners could be placed with a density of 10 100/cm2. That density range implies 7 × 106 tips on a 300 mm wafer. However, they do want to make clear that they do not contend that even this level of parallelism will make HDL a contender for producing CMOS consumer electronics. |
Author | Mahdavi, Mohammad Schaefer, Benjamin Carrion Fuchs, Ehud Saini, Rahul Lake, Joseph Owen, James H. G. Moheimani, S. O. Reza Randall, John N. |
Author_xml | – sequence: 1 givenname: John N. surname: Randall fullname: Randall, John N. email: jrandall@zyvexlabs.com organization: Zyvex Labs – sequence: 2 givenname: James H. G. surname: Owen fullname: Owen, James H. G. organization: Zyvex Labs – sequence: 3 givenname: Joseph surname: Lake fullname: Lake, Joseph organization: Zyvex Labs – sequence: 4 givenname: Rahul surname: Saini fullname: Saini, Rahul organization: Zyvex Labs – sequence: 5 givenname: Ehud surname: Fuchs fullname: Fuchs, Ehud organization: Zyvex Labs – sequence: 6 givenname: Mohammad surname: Mahdavi fullname: Mahdavi, Mohammad organization: Systems Engineering Department, University of Texas at Dallas – sequence: 7 givenname: S. O. Reza surname: Moheimani fullname: Moheimani, S. O. Reza organization: Systems Engineering Department, University of Texas at Dallas – sequence: 8 givenname: Benjamin Carrion surname: Schaefer fullname: Schaefer, Benjamin Carrion organization: Electrical Engineering Department, University of Texas at Dallas |
BackLink | https://www.osti.gov/biblio/1479598$$D View this record in Osti.gov |
BookMark | eNqdkMFLwzAUxoNMcM4d_A-KN4VuSZOm6VGGOmHgRb2GNE3WSJaUpA7639u6qSCefJf3Pfi9j_e-czBx3ikALhFcIIToEi1ySIoSlydgmiFK06zIyeRbE3oG5jG-waEoyyGGU_C6NtvG9kkrgrBW2SRK4Zxx26R7d07ZUe2MDD5K36qkElHVSdPXwW-VS2rVihjNXnTGu8SarvHbINqmvwCnWtio5sc-Ay_3d8-rdbp5enhc3W5SiSnqUlIKUuFca4q1IoyxAkORyYwohgqBcEklGcYaE6wLwVilJYUawgpmSOCa4Rm4Ovj62BkepemUbKQfLpcdR0MWeTlCywM0vhGD0nzgPk_ugjCWI8jH-Djix_iGjetfG20wOxH6P9mbAxu_XP8H7334AXlba_wBBWmOKw |
CODEN | JVTBD9 |
CitedBy_id | crossref_primary_10_1016_j_cplett_2021_139258 crossref_primary_10_1116_6_0000241 crossref_primary_10_1116_6_0002486 crossref_primary_10_1109_JMEMS_2021_3052180 crossref_primary_10_1116_1_5119392 crossref_primary_10_1103_PhysRevB_103_165127 crossref_primary_10_1116_6_0001107 crossref_primary_10_1088_2631_7990_ac3bb2 crossref_primary_10_1103_PhysRevMaterials_9_026201 crossref_primary_10_1038_s41467_022_35048_0 crossref_primary_10_1557_s43577_021_00139_8 crossref_primary_10_3390_mi13020228 |
Cites_doi | 10.1063/1.338189 10.1116/1.4823756 10.1143/JJAP.45.8972 10.1147/rd.305.0460 10.1116/1.4813761 10.1116/1.3610955 10.1109/TCST.2018.2844781 10.1109/TADVP.2007.901643 10.1016/j.mee.2009.11.143 10.1116/1.3237096 10.1109/IEDM.2015.7409608 10.1016/S0167-9317(98)00034-3 10.1103/PhysRevLett.80.1336 10.1038/ncomms1907 10.1063/1.2198536 10.1109/TRANSDUCERS.2011.5969891 10.1063/1.5003851 |
ContentType | Journal Article |
Copyright | Author(s) |
Copyright_xml | – notice: Author(s) |
DBID | AAYXX CITATION OTOTI |
DOI | 10.1116/1.5047939 |
DatabaseName | CrossRef OSTI.GOV |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2166-2754 |
ExternalDocumentID | 1479598 10_1116_1_5047939 |
GrantInformation_xml | – fundername: Defense Advanced Research Projects Agency grantid: FA8650-15-C-7542 funderid: http://dx.doi.org/10.13039/100000185 – fundername: Army Research Office grantid: W911NF-13-1-0470 funderid: http://dx.doi.org/10.13039/100000183 – fundername: U.S. Department of Energy grantid: DE-EE0008322 funderid: http://dx.doi.org/10.13039/100000015 |
GroupedDBID | .DC AAAAW AAEUA AAPUP AAYIH ABNAN ACBRY ACGFS ADLOM AFHCQ AGKCL AGTJO AGVCI ALMA_UNASSIGNED_HOLDINGS ARCSS EBS EJD M71 RIP RNS RQS VAS AAGWI AAYXX ABJGX ADMLS CITATION AQWKA OTOTI UG7 |
ID | FETCH-LOGICAL-c361t-49a4b35ff63fe4888730a2c24e817a1396c42c2d343f7a88bfc60f00b021a3d83 |
ISSN | 2166-2746 |
IngestDate | Mon May 01 23:02:00 EDT 2023 Thu Apr 24 23:05:09 EDT 2025 Tue Jul 01 02:43:45 EDT 2025 Fri Jun 21 00:15:57 EDT 2024 Sun Jul 14 18:01:18 EDT 2019 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | Published by the AVS. 2166-2746/2018/36(6)/06JL05/11/$30.00 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c361t-49a4b35ff63fe4888730a2c24e817a1396c42c2d343f7a88bfc60f00b021a3d83 |
Notes | USDOE EE0008322 |
OpenAccessLink | https://www.osti.gov/biblio/1479598 |
PageCount | 11 |
ParticipantIDs | scitation_primary_10_1116_1_5047939 crossref_primary_10_1116_1_5047939 crossref_citationtrail_10_1116_1_5047939 osti_scitechconnect_1479598 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20181100 2018-11-01 |
PublicationDateYYYYMMDD | 2018-11-01 |
PublicationDate_xml | – month: 11 year: 2018 text: 20181100 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of vacuum science and technology. B, Nanotechnology & microelectronics |
PublicationYear | 2018 |
Publisher | American Vacuum Society |
Publisher_xml | – name: American Vacuum Society |
References | Tennant (c4) 2013 Ballard, Sisson, Owen, Owen, Fuchs, Alexander, Randall, Von Ehr (c7) 2013 Randall, Ballard, Lyding, Schmucker, Von Ehr, Saini, Xu, Ding (c6) 2010 Randall, Lyding, Schmucker, Von Ehr, Ballard, Saini, Ding (c5) 2009 Li, Pradeep, Chikkamaranahalli, Stan, Attota, Fu, Silver (c26) 2011 Foley, Kam, Lyding, Avouris (c9) 1998 Rezeq, Pitters, Wolkow (c22) 2006 Tajaddodianfar, Moheimani, Owen, Randall (c18) 2018 Schmucker (c24) 2012 Bernstein, Liu, Yan, Sun, Kopp, Porod, Snider, Fay (c29) 2007 Kuo, Hwang, Fu, Lin, Chang, Tsong (c23) 2006 Hansma, Tersoff (c21) 1987 Fink (c20) 1986 Tajaddodianfar, Moheimani, Randall (c19) 2018 Liddle, Blakey, Knurek, Mkrtchyan, Novembre, Ocola, Saunders, Waskiewicz (c14) 1998 Sarkar, Mansour, Patange, Trainor (c12) 2011 (2023071607360987800_c5) 2009; 27 (2023071607360987800_c20) 1986; 30 2023071607360987800_c11 2023071607360987800_c10 2023071607360987800_c30 (2023071607360987800_c7) 2013; 31 (2023071607360987800_c24) 2012; 3 2023071607360987800_c25 (2023071607360987800_c18) 2018; 89 2023071607360987800_c28 2023071607360987800_c27 (2023071607360987800_c22) 2006; 124 (2023071607360987800_c9) 1998; 80 (2023071607360987800_c14) 1998; 41–42 (2023071607360987800_c19) 2018; 1 (2023071607360987800_c12) 2011; 2011 2023071607360987800_c8 (2023071607360987800_c29) 2007; 30 (2023071607360987800_c4) 2013; 31 (2023071607360987800_c6) 2010; 87 2023071607360987800_c1 2023071607360987800_c15 2023071607360987800_c2 2023071607360987800_c13 (2023071607360987800_c21) 1987; 61 (2023071607360987800_c23) 2006; 45 2023071607360987800_c17 (2023071607360987800_c26) 2011; 29 (2023071607360987800_c3) 1999 2023071607360987800_c16 |
References_xml | – start-page: 155 year: 1998 ident: c14 publication-title: Microelectron. Eng. – start-page: 06FC01 year: 2013 ident: c7 publication-title: J. Vac. Sci. Technol. B – year: 2018 ident: c19 publication-title: IEEE Trans. Control Syst. Technol. – start-page: 2610 year: 2011 ident: c12 publication-title: Transducers – start-page: 8972 year: 2006 ident: c23 publication-title: Jpn. J. Appl. Phys. – start-page: 013701 year: 2018 ident: c18 publication-title: Rev. Sci. Instrum. – start-page: 204716 year: 2006 ident: c22 publication-title: J. Chem. Phys. – start-page: 050813 year: 2013 ident: c4 publication-title: J. Vac. Sci. Technol. A – start-page: 955 year: 2010 ident: c6 publication-title: Microelectron. Eng. – start-page: 731 year: 2007 ident: c29 publication-title: IEEE Trans. Adv. Packag. – start-page: 935 year: 2012 ident: c24 publication-title: Nat. Commun. – start-page: 460 year: 1986 ident: c20 publication-title: IBM J. Res. Dev. – year: 1987 ident: c21 publication-title: J. Appl. Phys. – start-page: 041806 year: 2011 ident: c26 publication-title: J. Vac. Sci. Technol. B – start-page: 2764 year: 2009 ident: c5 publication-title: J. Vac. Sci. Technol. B – start-page: 1336 year: 1998 ident: c9 publication-title: Phys. Rev. Lett. – ident: 2023071607360987800_c13 – volume: 61 year: 1987 ident: 2023071607360987800_c21 publication-title: J. Appl. Phys. doi: 10.1063/1.338189 – ident: 2023071607360987800_c15 – ident: 2023071607360987800_c17 – volume: 31 start-page: 06FC01 year: 2013 ident: 2023071607360987800_c7 publication-title: J. Vac. Sci. Technol. B doi: 10.1116/1.4823756 – ident: 2023071607360987800_c30 – volume: 45 start-page: 8972 year: 2006 ident: 2023071607360987800_c23 publication-title: Jpn. J. Appl. Phys. doi: 10.1143/JJAP.45.8972 – ident: 2023071607360987800_c28 – volume: 30 start-page: 460 year: 1986 ident: 2023071607360987800_c20 publication-title: IBM J. Res. Dev. doi: 10.1147/rd.305.0460 – ident: 2023071607360987800_c2 – volume: 31 start-page: 050813 year: 2013 ident: 2023071607360987800_c4 publication-title: J. Vac. Sci. Technol. A doi: 10.1116/1.4813761 – volume: 29 start-page: 041806 year: 2011 ident: 2023071607360987800_c26 publication-title: J. Vac. Sci. Technol. B doi: 10.1116/1.3610955 – ident: 2023071607360987800_c10 – ident: 2023071607360987800_c16 – volume: 1 year: 2018 ident: 2023071607360987800_c19 publication-title: IEEE Trans. Control Syst. Technol. doi: 10.1109/TCST.2018.2844781 – volume: 30 start-page: 731 year: 2007 ident: 2023071607360987800_c29 publication-title: IEEE Trans. Adv. Packag. doi: 10.1109/TADVP.2007.901643 – volume: 87 start-page: 955 year: 2010 ident: 2023071607360987800_c6 publication-title: Microelectron. Eng. doi: 10.1016/j.mee.2009.11.143 – volume: 27 start-page: 2764 year: 2009 ident: 2023071607360987800_c5 publication-title: J. Vac. Sci. Technol. B doi: 10.1116/1.3237096 – volume-title: 2015 IEDM ident: 2023071607360987800_c1 doi: 10.1109/IEDM.2015.7409608 – volume: 41–42 start-page: 155 year: 1998 ident: 2023071607360987800_c14 publication-title: Microelectron. Eng. doi: 10.1016/S0167-9317(98)00034-3 – ident: 2023071607360987800_c8 – volume: 80 start-page: 1336 year: 1998 ident: 2023071607360987800_c9 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.80.1336 – volume: 3 start-page: 935 year: 2012 ident: 2023071607360987800_c24 publication-title: Nat. Commun. doi: 10.1038/ncomms1907 – ident: 2023071607360987800_c27 – volume: 124 start-page: 204716 year: 2006 ident: 2023071607360987800_c22 publication-title: J. Chem. Phys. doi: 10.1063/1.2198536 – start-page: 164 volume-title: Nanotechnology year: 1999 ident: 2023071607360987800_c3 – ident: 2023071607360987800_c25 – volume-title: 2011 16th International Solid-State Sensors, Actuators Microsystems Conference ident: 2023071607360987800_c11 doi: 10.1109/TRANSDUCERS.2011.5969891 – volume: 2011 start-page: 2610 year: 2011 ident: 2023071607360987800_c12 publication-title: Transducers – volume: 89 start-page: 013701 year: 2018 ident: 2023071607360987800_c18 publication-title: Rev. Sci. Instrum. doi: 10.1063/1.5003851 |
SSID | ssj0000685030 |
Score | 2.3482146 |
Snippet | Hydrogen depassivation lithography (HDL) carried out by a scanning tunneling microscope has sub-nm resolution and the potential to create atomically precise... |
SourceID | osti crossref scitation |
SourceType | Open Access Repository Enrichment Source Index Database Publisher |
Title | Highly parallel scanning tunneling microscope based hydrogen depassivation lithography |
URI | http://dx.doi.org/10.1116/1.5047939 https://www.osti.gov/biblio/1479598 |
Volume | 36 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaW7QF6QDzFUkAWcECKsiSx43iP5blCbS-0VW-R7STaA91Uq6QI_gh_l5nYcVJYKuASZb2Wk5351h6Pv5kh5CWrslKWKWY-1kXIY6VDrRUPM7Vghku9iEt06B8eieUJ_3SWnk0mP0aspbbRc_N9a1zJ_2gV2kCvGCX7D5r1g0ID3IN-4Qoahutf6RhJGuidUBusiILRjbYCUdC0SF_Bu3Mk3HWhJwEuWEWw-lZsahgRObBgOLviZhiKvBpnr_7dXr1Upm3Pgz4OqGNeer_8PHjj5up6aOxg1b3AUGxnoNajC8MxbJC9czT3_t6vLmAECbzBch589F8dKJcf1J5b9N4hrHLRYUWtHM_R-TFi6QL6PPL6A6pT-2scaXWYDpNYiBD20C5x9rjNpqHu53ObUMXhVvxhmeg8FvMUE-zbZEq_ZN2OORZhlzfITgL7j2hKdvbfHR589u67SMg06irZ-Pdyeatg7Nd-5CvWzrSGWXuX3ARFWZrFyJI5vkNuO5XSfYunu2RSru-R3VFiyvvk1CKL9siiPbKoRxYdkEU7ZNEeWfQKsugIWQ_IyYf3x2-XoavAERom4ibkC8U1S6tKsKqEqV7CeqASk_BSxpmCzYMwHD4WjMN_XkmpKyOiKoo0WI6KFZI9JNN1vS4fERoxoyIFy0fGKp6qQqcg1oppPOhNeJHNyKteUnkvH6yS8iW321SRx7kT6ow8910vbE6WbZ32UNw5Chtwb5A2Zprc6XVGXngtXDfGll6X9WbokV8U1eNrn7RHbg1of0KmzaYtn4Id2-hnDlM_AR2yoow |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Highly+parallel+scanning+tunneling+microscope+based+hydrogen+depassivation+lithography&rft.jtitle=Journal+of+vacuum+science+and+technology.+B%2C+Nanotechnology+%26+microelectronics&rft.au=Randall%2C+John+N.&rft.au=Owen%2C+James+H.+G.&rft.au=Lake%2C+Joseph&rft.au=Saini%2C+Rahul&rft.date=2018-11-01&rft.pub=American+Vacuum+Society&rft.issn=2166-2746&rft.eissn=2166-2754&rft.volume=36&rft.issue=6&rft_id=info:doi/10.1116%2F1.5047939&rft.externalDocID=1479598 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2166-2746&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2166-2746&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2166-2746&client=summon |