Comparison of Ground Point Filtering Algorithms for High-Density Point Clouds Collected by Terrestrial LiDAR
Terrestrial LiDAR (light detection and ranging) has been used to quantify micro-topographic changes using high-density 3D point clouds in which extracting the ground surface is susceptible to off-terrain (OT) points. Various filtering algorithms are available in classifying ground and OT points, but...
Saved in:
Published in | Remote sensing (Basel, Switzerland) Vol. 14; no. 19; p. 4776 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.10.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 2072-4292 2072-4292 |
DOI | 10.3390/rs14194776 |
Cover
Loading…
Abstract | Terrestrial LiDAR (light detection and ranging) has been used to quantify micro-topographic changes using high-density 3D point clouds in which extracting the ground surface is susceptible to off-terrain (OT) points. Various filtering algorithms are available in classifying ground and OT points, but additional research is needed to choose and implement a suitable algorithm for a given surface. This paper assesses the performance of three filtering algorithms in classifying terrestrial LiDAR point clouds: a cloth simulation filter (CSF), a modified slope-based filter (MSBF), and a random forest (RF) classifier, based on a typical use-case in quantifying soil erosion and surface denudation. A hillslope plot was scanned before and after removing vegetation to generate a test dataset of ground and OT points. Each algorithm was then tested against this dataset with various parameters/settings to obtain the highest performance. CSF produced the best classification with a Kappa value of 0.86, but its performance is highly influenced by the ‘time-step’ parameter. MSBF had the highest precision of 0.94 for ground point classification but the highest Kappa value of only 0.62. RF produced balanced classifications with the highest Kappa value of 0.75. This work provides valuable information in optimizing the parameters of the filtering algorithms to improve their performance in detecting micro-topographic changes. |
---|---|
AbstractList | Terrestrial LiDAR (light detection and ranging) has been used to quantify micro-topographic changes using high-density 3D point clouds in which extracting the ground surface is susceptible to off-terrain (OT) points. Various filtering algorithms are available in classifying ground and OT points, but additional research is needed to choose and implement a suitable algorithm for a given surface. This paper assesses the performance of three filtering algorithms in classifying terrestrial LiDAR point clouds: a cloth simulation filter (CSF), a modified slope-based filter (MSBF), and a random forest (RF) classifier, based on a typical use-case in quantifying soil erosion and surface denudation. A hillslope plot was scanned before and after removing vegetation to generate a test dataset of ground and OT points. Each algorithm was then tested against this dataset with various parameters/settings to obtain the highest performance. CSF produced the best classification with a Kappa value of 0.86, but its performance is highly influenced by the ‘time-step’ parameter. MSBF had the highest precision of 0.94 for ground point classification but the highest Kappa value of only 0.62. RF produced balanced classifications with the highest Kappa value of 0.75. This work provides valuable information in optimizing the parameters of the filtering algorithms to improve their performance in detecting micro-topographic changes. |
Author | Herrero, Hannah Yoder, Daniel Bailey, Gene Wright, Wesley Li, Yingkui McKinney, Nathan |
Author_xml | – sequence: 1 givenname: Gene surname: Bailey fullname: Bailey, Gene – sequence: 2 givenname: Yingkui orcidid: 0000-0002-3722-8960 surname: Li fullname: Li, Yingkui – sequence: 3 givenname: Nathan orcidid: 0000-0002-7590-2792 surname: McKinney fullname: McKinney, Nathan – sequence: 4 givenname: Daniel surname: Yoder fullname: Yoder, Daniel – sequence: 5 givenname: Wesley surname: Wright fullname: Wright, Wesley – sequence: 6 givenname: Hannah orcidid: 0000-0003-2338-947X surname: Herrero fullname: Herrero, Hannah |
BookMark | eNptUctqHDEQFMYGO7Yv-QJBboFJ9FrNzHEZxw9YsDHOWWiknrUWrbRpaQ_795lkHRKC-9JNU1VUUR_IacoJCPnI2Rcpe_YVC1e8V22rT8iFYK1olOjF6T_3ObkuZcPmkZL3TF2QOOTtzmIoOdE80TvM--TpUw6p0tsQK2BIa7qM64yhvm4LnTLS-7B-bW4glVAPb9gh5r0vdMgxgqvg6XigL4AIpWKwka7CzfL5ipxNNha4ftuX5Pvtt5fhvlk93j0My1XjpOa1Ue1i7HzfaQnAmFMTqFHNCUFppSQDq7xgHDqnuWLKSc_7BQg-Ohi1F3qUl-ThqOuz3Zgdhq3Fg8k2mN-PjGtjsQYXwYhF5zou5WSBKe5079k0Wi8VWDEKpmatT0etHeYf-zmO2eQ9ptm-Ea2Y7WjGFjOKHVEOcykIk3Gh2hpyqmhDNJyZXxWZvxXNlM__Uf4YfQf8E_X6kqM |
CitedBy_id | crossref_primary_10_1016_j_catena_2024_108347 crossref_primary_10_3390_geomatics3040027 crossref_primary_10_3390_rs15215163 crossref_primary_10_3390_drones8050172 crossref_primary_10_1016_j_ecoleng_2025_107600 crossref_primary_10_1088_1361_6501_ad338d crossref_primary_10_1080_15230406_2024_2390533 crossref_primary_10_1155_2023_3341788 crossref_primary_10_1109_JSTARS_2024_3355173 crossref_primary_10_3390_rs15143569 |
Cites_doi | 10.1641/0006-3568(2002)052[0019:LRSFES]2.0.CO;2 10.1016/j.geomorph.2014.03.008 10.3390/rs8060501 10.1016/j.scitotenv.2020.138320 10.1016/j.geomorph.2016.06.027 10.1016/j.catena.2019.104363 10.1029/2007GL031939 10.3390/rs5115851 10.1002/esp.2206 10.3389/feart.2020.587999 10.3390/rs11161915 10.1016/j.geoderma.2020.114477 10.3390/rs2030833 10.1016/j.cageo.2015.06.021 10.1002/esp.3353 10.1016/j.catena.2014.04.012 10.1016/j.cageo.2016.07.003 10.1002/esp.3721 10.3390/rs14071537 10.1002/esp.3344 10.1016/j.isprsjprs.2012.01.006 10.1016/j.still.2012.07.002 10.11613/BM.2012.031 10.1016/j.geomorph.2009.02.006 10.1061/(ASCE)SU.1943-5428.0000346 10.1016/j.geomorph.2010.01.009 10.1177/001316446002000104 10.1016/j.geomorph.2020.107039 10.1016/j.scitotenv.2018.11.137 10.1016/j.geomorph.2017.01.001 10.1016/j.isprsjprs.2017.05.006 10.1016/j.geomorph.2015.06.008 10.1016/j.iswcr.2017.06.002 |
ContentType | Journal Article |
Copyright | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F28 FR3 H8D H8G HCIFZ JG9 JQ2 KR7 L6V L7M L~C L~D M7S P5Z P62 P64 PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS DOA |
DOI | 10.3390/rs14194776 |
DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China Materials Business File Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences Engineered Materials Abstracts Natural Science Collection Chemoreception Abstracts ProQuest Central (New) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest One Academic Eastern Edition Electronics & Communications Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Ceramic Abstracts Ecology Abstracts Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Earth, Atmospheric & Aquatic Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Engineering Collection Biotechnology Research Abstracts ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection Corrosion Abstracts |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography |
EISSN | 2072-4292 |
ExternalDocumentID | oai_doaj_org_article_258c8133fae041c69d0fbad34ea2b204 10_3390_rs14194776 |
GroupedDBID | 29P 2WC 2XV 5VS 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION E3Z ESX FRP GROUPED_DOAJ HCIFZ I-F IAO ITC KQ8 L6V LK5 M7R M7S MODMG M~E OK1 P62 PCBAR PHGZM PHGZT PIMPY PROAC PTHSS TR2 TUS 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD ABUWG AZQEC C1K DWQXO F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c361t-475b8d9863ee00c4fe4b4339e464430ea4d201e8c61404c3d195e21bceb6d26b3 |
IEDL.DBID | BENPR |
ISSN | 2072-4292 |
IngestDate | Wed Aug 27 01:27:18 EDT 2025 Fri Jul 25 09:33:07 EDT 2025 Tue Jul 01 03:10:47 EDT 2025 Thu Apr 24 22:55:55 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 19 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c361t-475b8d9863ee00c4fe4b4339e464430ea4d201e8c61404c3d195e21bceb6d26b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-7590-2792 0000-0002-3722-8960 0000-0003-2338-947X |
OpenAccessLink | https://www.proquest.com/docview/2724306005?pq-origsite=%requestingapplication% |
PQID | 2724306005 |
PQPubID | 2032338 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_258c8133fae041c69d0fbad34ea2b204 proquest_journals_2724306005 crossref_citationtrail_10_3390_rs14194776 crossref_primary_10_3390_rs14194776 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-10-01 |
PublicationDateYYYYMMDD | 2022-10-01 |
PublicationDate_xml | – month: 10 year: 2022 text: 2022-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Remote sensing (Basel, Switzerland) |
PublicationYear | 2022 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Turunen (ref_10) 2020; 187 Lefsky (ref_1) 2002; 52 Barneveld (ref_20) 2013; 38 Weidner (ref_27) 2020; 354 Lu (ref_6) 2017; 5 Meijer (ref_9) 2013; 126 Che (ref_24) 2017; 129 Goodwin (ref_16) 2017; 282 Lindsay (ref_31) 2016; 95 Tarolli (ref_3) 2009; 113 Pedregosa (ref_32) 2011; 12 Densmore (ref_19) 2011; 36 Perroy (ref_13) 2010; 118 Bolkas (ref_8) 2021; 147 Slatton (ref_4) 2007; 34 Vericat (ref_11) 2014; 120 Meinen (ref_22) 2020; 729 Li (ref_15) 2020; 8 Rengers (ref_17) 2015; 40 Griesbaum (ref_14) 2013; 5 Neugirg (ref_23) 2016; 269 Brodu (ref_30) 2012; 68 McHugh (ref_35) 2012; 22 Quinton (ref_12) 2020; 375 Eltner (ref_5) 2015; 245 ref_25 Tarolli (ref_2) 2014; 216 Meng (ref_21) 2010; 2 Lu (ref_7) 2019; 655 Fan (ref_33) 2015; 83 Day (ref_18) 2013; 38 ref_29 ref_28 Cohen (ref_34) 1960; 20 Vosselman (ref_26) 2000; 33 |
References_xml | – volume: 52 start-page: 19 year: 2002 ident: ref_1 article-title: Lidar Remote Sensing for Ecosystem StudiesLidar, an Emerging Remote Sensing Technology That Directly Measures the Three-Dimensional Distribution of Plant Canopies, Can Accurately Estimate Vegetation Structural Attributes and Should Be of Particular Interest to Forest, Landscape, and Global Ecologists publication-title: BioScience doi: 10.1641/0006-3568(2002)052[0019:LRSFES]2.0.CO;2 – volume: 216 start-page: 295 year: 2014 ident: ref_2 article-title: High-Resolution Topography for Understanding Earth Surface Processes: Opportunities and Challenges publication-title: Geomorphology doi: 10.1016/j.geomorph.2014.03.008 – ident: ref_25 doi: 10.3390/rs8060501 – volume: 729 start-page: 138320 year: 2020 ident: ref_22 article-title: Where Did the Soil Go? Quantifying One Year of Soil Erosion on a Steep Tile-Drained Agricultural Field publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.138320 – volume: 269 start-page: 8 year: 2016 ident: ref_23 article-title: Erosion Processes in Calanchi in the Upper Orcia Valley, Southern Tuscany, Italy Based on Multitemporal High-Resolution Terrestrial LiDAR and UAV Surveys publication-title: Geomorphology doi: 10.1016/j.geomorph.2016.06.027 – volume: 187 start-page: 104363 year: 2020 ident: ref_10 article-title: Terrestrial Laser Scanning Data Combined with 3D Hydrological Modeling Decipher the Role of Tillage in Field Water Balance and Runoff Generation publication-title: CATENA doi: 10.1016/j.catena.2019.104363 – volume: 34 start-page: L23S10 year: 2007 ident: ref_4 article-title: Airborne Laser Swath Mapping: Achieving the Resolution and Accuracy Required for Geosurficial Research publication-title: Geophys. Res. Lett. doi: 10.1029/2007GL031939 – volume: 5 start-page: 5851 year: 2013 ident: ref_14 article-title: GIS-Based Detection of Gullies in Terrestrial LiDAR Data of the Cerro Llamoca Peatland (Peru) publication-title: Remote Sens. doi: 10.3390/rs5115851 – volume: 36 start-page: 1847 year: 2011 ident: ref_19 article-title: Detection of Surface Change in Complex Topography Using Terrestrial Laser Scanning: Application to the Illgraben Debris-Flow Channel publication-title: Earth Surf. Process. Landf. doi: 10.1002/esp.2206 – volume: 8 start-page: 14 year: 2020 ident: ref_15 article-title: Quantifying Short-Term Erosion and Deposition in an Active Gully Using Terrestrial Laser Scanning: A Case Study From West Tennessee, USA publication-title: Front. Earth Sci. doi: 10.3389/feart.2020.587999 – ident: ref_28 doi: 10.3390/rs11161915 – volume: 375 start-page: 114477 year: 2020 ident: ref_12 article-title: High-Resolution Monitoring of Diffuse (Sheet or Interrill) Erosion Using Structure-from-Motion publication-title: Geoderma doi: 10.1016/j.geoderma.2020.114477 – volume: 2 start-page: 833 year: 2010 ident: ref_21 article-title: Ground Filtering Algorithms for Airborne LiDAR Data: A Review of Critical Issues publication-title: Remote Sens. doi: 10.3390/rs2030833 – volume: 83 start-page: 54 year: 2015 ident: ref_33 article-title: Error in Target-Based Georeferencing and Registration in Terrestrial Laser Scanning publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2015.06.021 – volume: 38 start-page: 1055 year: 2013 ident: ref_18 article-title: Measuring Bluff Erosion Part 1: Terrestrial Laser Scanning Methods for Change Detection publication-title: Earth Surf. Process. Landf. doi: 10.1002/esp.3353 – volume: 120 start-page: 164 year: 2014 ident: ref_11 article-title: Patterns of Topographic Change in Sub-Humid Badlands Determined by High Resolution Multi-Temporal Topographic Surveys publication-title: CATENA doi: 10.1016/j.catena.2014.04.012 – volume: 95 start-page: 75 year: 2016 ident: ref_31 article-title: Whitebox GAT: A Case Study in Geomorphometric Analysis publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2016.07.003 – volume: 40 start-page: 1304 year: 2015 ident: ref_17 article-title: The Evolution of Gully Headcut Morphology: A Case Study Using Terrestrial Laser Scanning and Hydrological Monitoring publication-title: Earth Surf. Process. Landf. doi: 10.1002/esp.3721 – ident: ref_29 doi: 10.3390/rs14071537 – volume: 12 start-page: 2825 year: 2011 ident: ref_32 article-title: Scikit-Learn: Machine Learning in Python publication-title: J. Mach. Learn. Res. – volume: 38 start-page: 90 year: 2013 ident: ref_20 article-title: Assessment of Terrestrial Laser Scanning Technology for Obtaining High-Resolution DEMs of Soils: TLS FOR HIGH-RESOLUTION DEMS publication-title: Earth Surf. Process. Landf. doi: 10.1002/esp.3344 – volume: 68 start-page: 121 year: 2012 ident: ref_30 article-title: 3D Terrestrial Lidar Data Classification of Complex Natural Scenes Using a Multi-Scale Dimensionality Criterion: Applications in Geomorphology publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2012.01.006 – volume: 126 start-page: 1 year: 2013 ident: ref_9 article-title: Measuring Erosion in Long-Term Tillage Plots Using Ground-Based Lidar publication-title: Soil Tillage Res. doi: 10.1016/j.still.2012.07.002 – volume: 33 start-page: 935 year: 2000 ident: ref_26 article-title: Slope Based Filtering of Laser Altimetry Data publication-title: IAPRS – volume: 22 start-page: 276 year: 2012 ident: ref_35 article-title: Interrater Reliability: The Kappa Statistic publication-title: Biochem. Medica doi: 10.11613/BM.2012.031 – volume: 113 start-page: 47 year: 2009 ident: ref_3 article-title: Hillslope-to-Valley Transition Morphology: New Opportunities from High Resolution DTMs publication-title: Geomorphology doi: 10.1016/j.geomorph.2009.02.006 – volume: 147 start-page: 04021001 year: 2021 ident: ref_8 article-title: Comparison of SUAS Photogrammetry and TLS for Detecting Changes in Soil Surface Elevations Following Deep Tillage publication-title: J. Surv. Eng. doi: 10.1061/(ASCE)SU.1943-5428.0000346 – volume: 118 start-page: 288 year: 2010 ident: ref_13 article-title: Comparison of Gully Erosion Estimates Using Airborne and Ground-Based LiDAR on Santa Cruz Island, California publication-title: Geomorphology doi: 10.1016/j.geomorph.2010.01.009 – volume: 20 start-page: 37 year: 1960 ident: ref_34 article-title: A Coefficient of Agreement for Nominal Scales publication-title: Educ. Psychol. Meas. doi: 10.1177/001316446002000104 – volume: 354 start-page: 107039 year: 2020 ident: ref_27 article-title: Generalization Considerations and Solutions for Point Cloud Hillslope Classifiers publication-title: Geomorphology doi: 10.1016/j.geomorph.2020.107039 – volume: 655 start-page: 1479 year: 2019 ident: ref_7 article-title: Structural and Sedimentological Connectivity on a Rilled Hillslope publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.11.137 – volume: 282 start-page: 195 year: 2017 ident: ref_16 article-title: Monitoring Gully Change: A Comparison of Airborne and Terrestrial Laser Scanning Using a Case Study from Aratula, Queensland publication-title: Geomorphology doi: 10.1016/j.geomorph.2017.01.001 – volume: 129 start-page: 226 year: 2017 ident: ref_24 article-title: Fast Ground Filtering for TLS Data via Scanline Density Analysis publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2017.05.006 – volume: 245 start-page: 243 year: 2015 ident: ref_5 article-title: Accuracy Constraints of Terrestrial Lidar Data for Soil Erosion Measurement: Application to a Mediterranean Field Plot publication-title: Geomorphology doi: 10.1016/j.geomorph.2015.06.008 – volume: 5 start-page: 241 year: 2017 ident: ref_6 article-title: The Effect of Grid Size on the Quantification of Erosion, Deposition, and Rill Network publication-title: Int. Soil Water Conserv. Res. doi: 10.1016/j.iswcr.2017.06.002 |
SSID | ssj0000331904 |
Score | 2.3820956 |
Snippet | Terrestrial LiDAR (light detection and ranging) has been used to quantify micro-topographic changes using high-density 3D point clouds in which extracting the... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 4776 |
SubjectTerms | Algorithms Classification cloth simulation filter Datasets Density Denudation Design Filtration Lasers Lidar micro-topographic change detection modified slope-based filter Neighborhoods Parameters Performance assessment Performance evaluation point cloud classification random forest classifier Scanners Software Soil erosion terrestrial LiDAR Three dimensional models Topography Vegetation |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwFA7iRS_iT5xOCejFQ1maJml6nJtjiIrIBruV5UfdYLaydYf9976k3RwoePFaHrRJvuZ9X_r6PYRueayMAeIaSKMNCBSAsZLOECBTJlY01NrbLj6_iP6QPY74aKvVl6sJq-yBq4lrUS61BCGVjS1hoRaJIZkam4jZMVW0cgKFnLclpvweHAG0CKv8SCPQ9a35ImQg2GNnLrKVgbxR_4992CeX3iE6qFkhbldPc4R2bH6M9uoG5ZPVCZp1Nv0CcZFhd2KUG_xaTPMS96buizekINyevRcg9icfCwxcFLsajqDrKtTLVR3bmRVLs8D-uEAD2cRqhQfWN-hwSMRP02777RQNew-DTj-oGyUEOhJhGbCYK2kSKSJrCdEss0wxGLVlwHYiYsfMQJ63UgtnpqMjEybc0lBpq4ShQkVnaDcvcnuOsM60VIISqzlhmZAq4cZyQ-I4ERS0RwPdrScv1bWLuGtmMUtBTbiJTr8nuoFuNrGflXfGr1H3bg02Ec7v2l8AFKQ1CtK_UNBAzfUKpvVLuEhpTGH0wOj4xX_c4xLtU_fvg6_ka6Ldcr60V8BISnXtwfcFUuXevw priority: 102 providerName: Directory of Open Access Journals |
Title | Comparison of Ground Point Filtering Algorithms for High-Density Point Clouds Collected by Terrestrial LiDAR |
URI | https://www.proquest.com/docview/2724306005 https://doaj.org/article/258c8133fae041c69d0fbad34ea2b204 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8MwDI5gO8AF8RSPMUWCC4eKNE3T9ITGxkAIEOIhcauWR8ek0cJaDvv3OFk2kEBcWx9Sx7H9Oe5nhI7jRGoNiWsgtNIAUMCMpbCEALnUiaShUo528faOXz2z65f4xRfcKt9WOfeJzlHrUtka-SlNKIP0Fozm7P0jsFOj7O2qH6GxjJrgggWAr-b5xd39w6LKQiIwMcJmvKQR4PvTSRUyAO6JJRn5EYkcYf8vf-yCTH8drfnsEHdm27mBlkyxiVb8oPLX6RYadxdzA3GZY1s5KjS-L0dFjfsje_MNoQh3xkNYev36VmHISbHt5Qh6tlO9nnrZ7rj81BV2ZQMFSSeWU_xk3KAOa5H4ZtTrPGyj5_7FU_cq8AMTAhXxsA5YEkuhU8EjYwhRLDdMMvhqwyDriYgZMA3x3gjFLamOinSYxoaGUhnJNeUy2kGNoizMLsIqV0JySoyKCcu5kGmsTaxJkqScAgbZQydz5WXKs4nboRbjDFCFVXT2reg9dLSQfZ9xaPwpdW73YCFhea_dg3IyzPwxymgslABYnQ8MYaHiqSa5HOiImQGVlMCyWvMdzPxhrLJv09n___UBWqX27wbXq9dCjXryaQ4h56hlGy2L_mUbNTu925vHtjeztkPwXzgK2q0 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOZQLKi9RKMUScOAQ1bEdxzkgtN1l2dJthdBW6i2sH2lXWpJ2kwrtn-pv7Iw32SKBuPUaT6Jo_Nnz8Hg-Qt4nqXEOHNdIO-sgQAEYG40NAQrjUsNja0PbxeMTNTqV386Ssw1y092FwbLKbk8MG7WrLObI93nKJbi3AJrPl1cRskbh6WpHobGCxZFf_oaQrf50OID5_cD58MukP4paVoHIChU3kUwTo12mlfCeMSsLL40UIvMSXAPB_FQ6MIpeW4WdZ6xwcZZ4HhvrjXJcGQHffUAe4iu4ovTw6zqnwwQAmslVF1QYZ_uLOpZxJlNsafKH3Qv0AH_t_sGkDbfJ49YXpb0VeJ6QDV8-JVstLfrF8hmZ99cshbQqKOapSke_V7OyocMZnrOD4aO9-Tkoqrn4VVPwgClWjkQDrItvlq1sf15du5qGJIUFF5eaJZ34QAuC-Kfj2aD34zk5vRdFviCbZVX6l4TawmqjOPM2YbJQ2mSJ84ljaZopDhHPDvnYKS-3be9ypNCY5xDDoKLzO0XvkHdr2ctVx45_Sh3gHKwlsMt2eFAtzvN20eY80VZDEF9MPZOxVZljhZk6If2UG87gt3a7GczbpV_nd0B99f_ht2RrNDke5-PDk6PX5BHHexWhSnCXbDaLa_8GvJ3G7AWIUfLzvjF9CxyPEhU |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD4anQS8IK7aYIAl4IGHqI7tOM4DQl27amOjqqZN2luoL9kqlWQ0mVD_Gr-O49TpkEC87TWxrOj4s88lx98H8D5JtbUYuEbKGosJCsJYK08IUGibahYb09Iufp3Iw3Px5SK52IJf3V0Y31bZnYntQW0r42vkfZYygeEtgqZfhLaI6Wj8-fpH5BWk_J_WTk5jDZFjt_qJ6Vv96WiEa_2BsfHB2fAwCgoDkeEybiKRJlrZTEnuHKVGFE5owXnmBIYJnLqZsOggnTLSs9AYbuMscSzWxmlpmdQc570H2ylmRbQH2_sHk-nppsJDOcKbijUnKk5K-8s6FnEmUk9w8ocXbMUC_vIFrYMbP4ZHITIlgzWUnsCWK5_CgyCSfrV6BovhRrOQVAXxVavSkmk1Lxsynvu_7ugGyWBxiaZqrr7XBONh4vtIopHvkm9WYexwUd3YmrQlC4MBL9ErcuZakRC_G8jJfDQ4fQ7nd2LKF9Arq9LtADGFUVoy6kxCRSGVzhLrEkvTNJMM859d-NgZLzeBydwLaixyzGi8ofNbQ-_Cu83Y6zV_xz9H7fs12IzwnNvtg2p5mYctnLNEGYUpfTFzVMRGZpYWema5cDOmGcXP2utWMA8HQZ3fwvbl_1-_hfuI5_zkaHL8Ch4yf8mibRncg16zvHGvMfRp9JuAMQLf7hrWvwFOVBen |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+of+Ground+Point+Filtering+Algorithms+for+High-Density+Point+Clouds+Collected+by+Terrestrial+LiDAR&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Bailey%2C+Gene&rft.au=Li%2C+Yingkui&rft.au=McKinney%2C+Nathan&rft.au=Yoder%2C+Daniel&rft.date=2022-10-01&rft.issn=2072-4292&rft.eissn=2072-4292&rft.volume=14&rft.issue=19&rft.spage=4776&rft_id=info:doi/10.3390%2Frs14194776&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_rs14194776 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon |