Comparison of Ground Point Filtering Algorithms for High-Density Point Clouds Collected by Terrestrial LiDAR

Terrestrial LiDAR (light detection and ranging) has been used to quantify micro-topographic changes using high-density 3D point clouds in which extracting the ground surface is susceptible to off-terrain (OT) points. Various filtering algorithms are available in classifying ground and OT points, but...

Full description

Saved in:
Bibliographic Details
Published inRemote sensing (Basel, Switzerland) Vol. 14; no. 19; p. 4776
Main Authors Bailey, Gene, Li, Yingkui, McKinney, Nathan, Yoder, Daniel, Wright, Wesley, Herrero, Hannah
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.10.2022
Subjects
Online AccessGet full text
ISSN2072-4292
2072-4292
DOI10.3390/rs14194776

Cover

Loading…
Abstract Terrestrial LiDAR (light detection and ranging) has been used to quantify micro-topographic changes using high-density 3D point clouds in which extracting the ground surface is susceptible to off-terrain (OT) points. Various filtering algorithms are available in classifying ground and OT points, but additional research is needed to choose and implement a suitable algorithm for a given surface. This paper assesses the performance of three filtering algorithms in classifying terrestrial LiDAR point clouds: a cloth simulation filter (CSF), a modified slope-based filter (MSBF), and a random forest (RF) classifier, based on a typical use-case in quantifying soil erosion and surface denudation. A hillslope plot was scanned before and after removing vegetation to generate a test dataset of ground and OT points. Each algorithm was then tested against this dataset with various parameters/settings to obtain the highest performance. CSF produced the best classification with a Kappa value of 0.86, but its performance is highly influenced by the ‘time-step’ parameter. MSBF had the highest precision of 0.94 for ground point classification but the highest Kappa value of only 0.62. RF produced balanced classifications with the highest Kappa value of 0.75. This work provides valuable information in optimizing the parameters of the filtering algorithms to improve their performance in detecting micro-topographic changes.
AbstractList Terrestrial LiDAR (light detection and ranging) has been used to quantify micro-topographic changes using high-density 3D point clouds in which extracting the ground surface is susceptible to off-terrain (OT) points. Various filtering algorithms are available in classifying ground and OT points, but additional research is needed to choose and implement a suitable algorithm for a given surface. This paper assesses the performance of three filtering algorithms in classifying terrestrial LiDAR point clouds: a cloth simulation filter (CSF), a modified slope-based filter (MSBF), and a random forest (RF) classifier, based on a typical use-case in quantifying soil erosion and surface denudation. A hillslope plot was scanned before and after removing vegetation to generate a test dataset of ground and OT points. Each algorithm was then tested against this dataset with various parameters/settings to obtain the highest performance. CSF produced the best classification with a Kappa value of 0.86, but its performance is highly influenced by the ‘time-step’ parameter. MSBF had the highest precision of 0.94 for ground point classification but the highest Kappa value of only 0.62. RF produced balanced classifications with the highest Kappa value of 0.75. This work provides valuable information in optimizing the parameters of the filtering algorithms to improve their performance in detecting micro-topographic changes.
Author Herrero, Hannah
Yoder, Daniel
Bailey, Gene
Wright, Wesley
Li, Yingkui
McKinney, Nathan
Author_xml – sequence: 1
  givenname: Gene
  surname: Bailey
  fullname: Bailey, Gene
– sequence: 2
  givenname: Yingkui
  orcidid: 0000-0002-3722-8960
  surname: Li
  fullname: Li, Yingkui
– sequence: 3
  givenname: Nathan
  orcidid: 0000-0002-7590-2792
  surname: McKinney
  fullname: McKinney, Nathan
– sequence: 4
  givenname: Daniel
  surname: Yoder
  fullname: Yoder, Daniel
– sequence: 5
  givenname: Wesley
  surname: Wright
  fullname: Wright, Wesley
– sequence: 6
  givenname: Hannah
  orcidid: 0000-0003-2338-947X
  surname: Herrero
  fullname: Herrero, Hannah
BookMark eNptUctqHDEQFMYGO7Yv-QJBboFJ9FrNzHEZxw9YsDHOWWiknrUWrbRpaQ_795lkHRKC-9JNU1VUUR_IacoJCPnI2Rcpe_YVC1e8V22rT8iFYK1olOjF6T_3ObkuZcPmkZL3TF2QOOTtzmIoOdE80TvM--TpUw6p0tsQK2BIa7qM64yhvm4LnTLS-7B-bW4glVAPb9gh5r0vdMgxgqvg6XigL4AIpWKwka7CzfL5ipxNNha4ftuX5Pvtt5fhvlk93j0My1XjpOa1Ue1i7HzfaQnAmFMTqFHNCUFppSQDq7xgHDqnuWLKSc_7BQg-Ohi1F3qUl-ThqOuz3Zgdhq3Fg8k2mN-PjGtjsQYXwYhF5zou5WSBKe5079k0Wi8VWDEKpmatT0etHeYf-zmO2eQ9ptm-Ea2Y7WjGFjOKHVEOcykIk3Gh2hpyqmhDNJyZXxWZvxXNlM__Uf4YfQf8E_X6kqM
CitedBy_id crossref_primary_10_1016_j_catena_2024_108347
crossref_primary_10_3390_geomatics3040027
crossref_primary_10_3390_rs15215163
crossref_primary_10_3390_drones8050172
crossref_primary_10_1016_j_ecoleng_2025_107600
crossref_primary_10_1088_1361_6501_ad338d
crossref_primary_10_1080_15230406_2024_2390533
crossref_primary_10_1155_2023_3341788
crossref_primary_10_1109_JSTARS_2024_3355173
crossref_primary_10_3390_rs15143569
Cites_doi 10.1641/0006-3568(2002)052[0019:LRSFES]2.0.CO;2
10.1016/j.geomorph.2014.03.008
10.3390/rs8060501
10.1016/j.scitotenv.2020.138320
10.1016/j.geomorph.2016.06.027
10.1016/j.catena.2019.104363
10.1029/2007GL031939
10.3390/rs5115851
10.1002/esp.2206
10.3389/feart.2020.587999
10.3390/rs11161915
10.1016/j.geoderma.2020.114477
10.3390/rs2030833
10.1016/j.cageo.2015.06.021
10.1002/esp.3353
10.1016/j.catena.2014.04.012
10.1016/j.cageo.2016.07.003
10.1002/esp.3721
10.3390/rs14071537
10.1002/esp.3344
10.1016/j.isprsjprs.2012.01.006
10.1016/j.still.2012.07.002
10.11613/BM.2012.031
10.1016/j.geomorph.2009.02.006
10.1061/(ASCE)SU.1943-5428.0000346
10.1016/j.geomorph.2010.01.009
10.1177/001316446002000104
10.1016/j.geomorph.2020.107039
10.1016/j.scitotenv.2018.11.137
10.1016/j.geomorph.2017.01.001
10.1016/j.isprsjprs.2017.05.006
10.1016/j.geomorph.2015.06.008
10.1016/j.iswcr.2017.06.002
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F28
FR3
H8D
H8G
HCIFZ
JG9
JQ2
KR7
L6V
L7M
L~C
L~D
M7S
P5Z
P62
P64
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOA
DOI 10.3390/rs14194776
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
Materials Business File
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Natural Science Collection
Chemoreception Abstracts
ProQuest Central (New)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Ceramic Abstracts
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Engineering Collection
Biotechnology Research Abstracts
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
Corrosion Abstracts
DatabaseTitleList Publicly Available Content Database
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 2072-4292
ExternalDocumentID oai_doaj_org_article_258c8133fae041c69d0fbad34ea2b204
10_3390_rs14194776
GroupedDBID 29P
2WC
2XV
5VS
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
E3Z
ESX
FRP
GROUPED_DOAJ
HCIFZ
I-F
IAO
ITC
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
P62
PCBAR
PHGZM
PHGZT
PIMPY
PROAC
PTHSS
TR2
TUS
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
ABUWG
AZQEC
C1K
DWQXO
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c361t-475b8d9863ee00c4fe4b4339e464430ea4d201e8c61404c3d195e21bceb6d26b3
IEDL.DBID BENPR
ISSN 2072-4292
IngestDate Wed Aug 27 01:27:18 EDT 2025
Fri Jul 25 09:33:07 EDT 2025
Tue Jul 01 03:10:47 EDT 2025
Thu Apr 24 22:55:55 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 19
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c361t-475b8d9863ee00c4fe4b4339e464430ea4d201e8c61404c3d195e21bceb6d26b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7590-2792
0000-0002-3722-8960
0000-0003-2338-947X
OpenAccessLink https://www.proquest.com/docview/2724306005?pq-origsite=%requestingapplication%
PQID 2724306005
PQPubID 2032338
ParticipantIDs doaj_primary_oai_doaj_org_article_258c8133fae041c69d0fbad34ea2b204
proquest_journals_2724306005
crossref_citationtrail_10_3390_rs14194776
crossref_primary_10_3390_rs14194776
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-10-01
PublicationDateYYYYMMDD 2022-10-01
PublicationDate_xml – month: 10
  year: 2022
  text: 2022-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Remote sensing (Basel, Switzerland)
PublicationYear 2022
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Turunen (ref_10) 2020; 187
Lefsky (ref_1) 2002; 52
Barneveld (ref_20) 2013; 38
Weidner (ref_27) 2020; 354
Lu (ref_6) 2017; 5
Meijer (ref_9) 2013; 126
Che (ref_24) 2017; 129
Goodwin (ref_16) 2017; 282
Lindsay (ref_31) 2016; 95
Tarolli (ref_3) 2009; 113
Pedregosa (ref_32) 2011; 12
Densmore (ref_19) 2011; 36
Perroy (ref_13) 2010; 118
Bolkas (ref_8) 2021; 147
Slatton (ref_4) 2007; 34
Vericat (ref_11) 2014; 120
Meinen (ref_22) 2020; 729
Li (ref_15) 2020; 8
Rengers (ref_17) 2015; 40
Griesbaum (ref_14) 2013; 5
Neugirg (ref_23) 2016; 269
Brodu (ref_30) 2012; 68
McHugh (ref_35) 2012; 22
Quinton (ref_12) 2020; 375
Eltner (ref_5) 2015; 245
ref_25
Tarolli (ref_2) 2014; 216
Meng (ref_21) 2010; 2
Lu (ref_7) 2019; 655
Fan (ref_33) 2015; 83
Day (ref_18) 2013; 38
ref_29
ref_28
Cohen (ref_34) 1960; 20
Vosselman (ref_26) 2000; 33
References_xml – volume: 52
  start-page: 19
  year: 2002
  ident: ref_1
  article-title: Lidar Remote Sensing for Ecosystem StudiesLidar, an Emerging Remote Sensing Technology That Directly Measures the Three-Dimensional Distribution of Plant Canopies, Can Accurately Estimate Vegetation Structural Attributes and Should Be of Particular Interest to Forest, Landscape, and Global Ecologists
  publication-title: BioScience
  doi: 10.1641/0006-3568(2002)052[0019:LRSFES]2.0.CO;2
– volume: 216
  start-page: 295
  year: 2014
  ident: ref_2
  article-title: High-Resolution Topography for Understanding Earth Surface Processes: Opportunities and Challenges
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2014.03.008
– ident: ref_25
  doi: 10.3390/rs8060501
– volume: 729
  start-page: 138320
  year: 2020
  ident: ref_22
  article-title: Where Did the Soil Go? Quantifying One Year of Soil Erosion on a Steep Tile-Drained Agricultural Field
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.138320
– volume: 269
  start-page: 8
  year: 2016
  ident: ref_23
  article-title: Erosion Processes in Calanchi in the Upper Orcia Valley, Southern Tuscany, Italy Based on Multitemporal High-Resolution Terrestrial LiDAR and UAV Surveys
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2016.06.027
– volume: 187
  start-page: 104363
  year: 2020
  ident: ref_10
  article-title: Terrestrial Laser Scanning Data Combined with 3D Hydrological Modeling Decipher the Role of Tillage in Field Water Balance and Runoff Generation
  publication-title: CATENA
  doi: 10.1016/j.catena.2019.104363
– volume: 34
  start-page: L23S10
  year: 2007
  ident: ref_4
  article-title: Airborne Laser Swath Mapping: Achieving the Resolution and Accuracy Required for Geosurficial Research
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2007GL031939
– volume: 5
  start-page: 5851
  year: 2013
  ident: ref_14
  article-title: GIS-Based Detection of Gullies in Terrestrial LiDAR Data of the Cerro Llamoca Peatland (Peru)
  publication-title: Remote Sens.
  doi: 10.3390/rs5115851
– volume: 36
  start-page: 1847
  year: 2011
  ident: ref_19
  article-title: Detection of Surface Change in Complex Topography Using Terrestrial Laser Scanning: Application to the Illgraben Debris-Flow Channel
  publication-title: Earth Surf. Process. Landf.
  doi: 10.1002/esp.2206
– volume: 8
  start-page: 14
  year: 2020
  ident: ref_15
  article-title: Quantifying Short-Term Erosion and Deposition in an Active Gully Using Terrestrial Laser Scanning: A Case Study From West Tennessee, USA
  publication-title: Front. Earth Sci.
  doi: 10.3389/feart.2020.587999
– ident: ref_28
  doi: 10.3390/rs11161915
– volume: 375
  start-page: 114477
  year: 2020
  ident: ref_12
  article-title: High-Resolution Monitoring of Diffuse (Sheet or Interrill) Erosion Using Structure-from-Motion
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2020.114477
– volume: 2
  start-page: 833
  year: 2010
  ident: ref_21
  article-title: Ground Filtering Algorithms for Airborne LiDAR Data: A Review of Critical Issues
  publication-title: Remote Sens.
  doi: 10.3390/rs2030833
– volume: 83
  start-page: 54
  year: 2015
  ident: ref_33
  article-title: Error in Target-Based Georeferencing and Registration in Terrestrial Laser Scanning
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2015.06.021
– volume: 38
  start-page: 1055
  year: 2013
  ident: ref_18
  article-title: Measuring Bluff Erosion Part 1: Terrestrial Laser Scanning Methods for Change Detection
  publication-title: Earth Surf. Process. Landf.
  doi: 10.1002/esp.3353
– volume: 120
  start-page: 164
  year: 2014
  ident: ref_11
  article-title: Patterns of Topographic Change in Sub-Humid Badlands Determined by High Resolution Multi-Temporal Topographic Surveys
  publication-title: CATENA
  doi: 10.1016/j.catena.2014.04.012
– volume: 95
  start-page: 75
  year: 2016
  ident: ref_31
  article-title: Whitebox GAT: A Case Study in Geomorphometric Analysis
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2016.07.003
– volume: 40
  start-page: 1304
  year: 2015
  ident: ref_17
  article-title: The Evolution of Gully Headcut Morphology: A Case Study Using Terrestrial Laser Scanning and Hydrological Monitoring
  publication-title: Earth Surf. Process. Landf.
  doi: 10.1002/esp.3721
– ident: ref_29
  doi: 10.3390/rs14071537
– volume: 12
  start-page: 2825
  year: 2011
  ident: ref_32
  article-title: Scikit-Learn: Machine Learning in Python
  publication-title: J. Mach. Learn. Res.
– volume: 38
  start-page: 90
  year: 2013
  ident: ref_20
  article-title: Assessment of Terrestrial Laser Scanning Technology for Obtaining High-Resolution DEMs of Soils: TLS FOR HIGH-RESOLUTION DEMS
  publication-title: Earth Surf. Process. Landf.
  doi: 10.1002/esp.3344
– volume: 68
  start-page: 121
  year: 2012
  ident: ref_30
  article-title: 3D Terrestrial Lidar Data Classification of Complex Natural Scenes Using a Multi-Scale Dimensionality Criterion: Applications in Geomorphology
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2012.01.006
– volume: 126
  start-page: 1
  year: 2013
  ident: ref_9
  article-title: Measuring Erosion in Long-Term Tillage Plots Using Ground-Based Lidar
  publication-title: Soil Tillage Res.
  doi: 10.1016/j.still.2012.07.002
– volume: 33
  start-page: 935
  year: 2000
  ident: ref_26
  article-title: Slope Based Filtering of Laser Altimetry Data
  publication-title: IAPRS
– volume: 22
  start-page: 276
  year: 2012
  ident: ref_35
  article-title: Interrater Reliability: The Kappa Statistic
  publication-title: Biochem. Medica
  doi: 10.11613/BM.2012.031
– volume: 113
  start-page: 47
  year: 2009
  ident: ref_3
  article-title: Hillslope-to-Valley Transition Morphology: New Opportunities from High Resolution DTMs
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2009.02.006
– volume: 147
  start-page: 04021001
  year: 2021
  ident: ref_8
  article-title: Comparison of SUAS Photogrammetry and TLS for Detecting Changes in Soil Surface Elevations Following Deep Tillage
  publication-title: J. Surv. Eng.
  doi: 10.1061/(ASCE)SU.1943-5428.0000346
– volume: 118
  start-page: 288
  year: 2010
  ident: ref_13
  article-title: Comparison of Gully Erosion Estimates Using Airborne and Ground-Based LiDAR on Santa Cruz Island, California
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2010.01.009
– volume: 20
  start-page: 37
  year: 1960
  ident: ref_34
  article-title: A Coefficient of Agreement for Nominal Scales
  publication-title: Educ. Psychol. Meas.
  doi: 10.1177/001316446002000104
– volume: 354
  start-page: 107039
  year: 2020
  ident: ref_27
  article-title: Generalization Considerations and Solutions for Point Cloud Hillslope Classifiers
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2020.107039
– volume: 655
  start-page: 1479
  year: 2019
  ident: ref_7
  article-title: Structural and Sedimentological Connectivity on a Rilled Hillslope
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.11.137
– volume: 282
  start-page: 195
  year: 2017
  ident: ref_16
  article-title: Monitoring Gully Change: A Comparison of Airborne and Terrestrial Laser Scanning Using a Case Study from Aratula, Queensland
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2017.01.001
– volume: 129
  start-page: 226
  year: 2017
  ident: ref_24
  article-title: Fast Ground Filtering for TLS Data via Scanline Density Analysis
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2017.05.006
– volume: 245
  start-page: 243
  year: 2015
  ident: ref_5
  article-title: Accuracy Constraints of Terrestrial Lidar Data for Soil Erosion Measurement: Application to a Mediterranean Field Plot
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2015.06.008
– volume: 5
  start-page: 241
  year: 2017
  ident: ref_6
  article-title: The Effect of Grid Size on the Quantification of Erosion, Deposition, and Rill Network
  publication-title: Int. Soil Water Conserv. Res.
  doi: 10.1016/j.iswcr.2017.06.002
SSID ssj0000331904
Score 2.3820956
Snippet Terrestrial LiDAR (light detection and ranging) has been used to quantify micro-topographic changes using high-density 3D point clouds in which extracting the...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 4776
SubjectTerms Algorithms
Classification
cloth simulation filter
Datasets
Density
Denudation
Design
Filtration
Lasers
Lidar
micro-topographic change detection
modified slope-based filter
Neighborhoods
Parameters
Performance assessment
Performance evaluation
point cloud classification
random forest classifier
Scanners
Software
Soil erosion
terrestrial LiDAR
Three dimensional models
Topography
Vegetation
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwFA7iRS_iT5xOCejFQ1maJml6nJtjiIrIBruV5UfdYLaydYf9976k3RwoePFaHrRJvuZ9X_r6PYRueayMAeIaSKMNCBSAsZLOECBTJlY01NrbLj6_iP6QPY74aKvVl6sJq-yBq4lrUS61BCGVjS1hoRaJIZkam4jZMVW0cgKFnLclpvweHAG0CKv8SCPQ9a35ImQg2GNnLrKVgbxR_4992CeX3iE6qFkhbldPc4R2bH6M9uoG5ZPVCZp1Nv0CcZFhd2KUG_xaTPMS96buizekINyevRcg9icfCwxcFLsajqDrKtTLVR3bmRVLs8D-uEAD2cRqhQfWN-hwSMRP02777RQNew-DTj-oGyUEOhJhGbCYK2kSKSJrCdEss0wxGLVlwHYiYsfMQJ63UgtnpqMjEybc0lBpq4ShQkVnaDcvcnuOsM60VIISqzlhmZAq4cZyQ-I4ERS0RwPdrScv1bWLuGtmMUtBTbiJTr8nuoFuNrGflXfGr1H3bg02Ec7v2l8AFKQ1CtK_UNBAzfUKpvVLuEhpTGH0wOj4xX_c4xLtU_fvg6_ka6Ldcr60V8BISnXtwfcFUuXevw
  priority: 102
  providerName: Directory of Open Access Journals
Title Comparison of Ground Point Filtering Algorithms for High-Density Point Clouds Collected by Terrestrial LiDAR
URI https://www.proquest.com/docview/2724306005
https://doaj.org/article/258c8133fae041c69d0fbad34ea2b204
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8MwDI5gO8AF8RSPMUWCC4eKNE3T9ITGxkAIEOIhcauWR8ek0cJaDvv3OFk2kEBcWx9Sx7H9Oe5nhI7jRGoNiWsgtNIAUMCMpbCEALnUiaShUo528faOXz2z65f4xRfcKt9WOfeJzlHrUtka-SlNKIP0Fozm7P0jsFOj7O2qH6GxjJrgggWAr-b5xd39w6LKQiIwMcJmvKQR4PvTSRUyAO6JJRn5EYkcYf8vf-yCTH8drfnsEHdm27mBlkyxiVb8oPLX6RYadxdzA3GZY1s5KjS-L0dFjfsje_MNoQh3xkNYev36VmHISbHt5Qh6tlO9nnrZ7rj81BV2ZQMFSSeWU_xk3KAOa5H4ZtTrPGyj5_7FU_cq8AMTAhXxsA5YEkuhU8EjYwhRLDdMMvhqwyDriYgZMA3x3gjFLamOinSYxoaGUhnJNeUy2kGNoizMLsIqV0JySoyKCcu5kGmsTaxJkqScAgbZQydz5WXKs4nboRbjDFCFVXT2reg9dLSQfZ9xaPwpdW73YCFhea_dg3IyzPwxymgslABYnQ8MYaHiqSa5HOiImQGVlMCyWvMdzPxhrLJv09n___UBWqX27wbXq9dCjXryaQ4h56hlGy2L_mUbNTu925vHtjeztkPwXzgK2q0
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOZQLKi9RKMUScOAQ1bEdxzkgtN1l2dJthdBW6i2sH2lXWpJ2kwrtn-pv7Iw32SKBuPUaT6Jo_Nnz8Hg-Qt4nqXEOHNdIO-sgQAEYG40NAQrjUsNja0PbxeMTNTqV386Ssw1y092FwbLKbk8MG7WrLObI93nKJbi3AJrPl1cRskbh6WpHobGCxZFf_oaQrf50OID5_cD58MukP4paVoHIChU3kUwTo12mlfCeMSsLL40UIvMSXAPB_FQ6MIpeW4WdZ6xwcZZ4HhvrjXJcGQHffUAe4iu4ovTw6zqnwwQAmslVF1QYZ_uLOpZxJlNsafKH3Qv0AH_t_sGkDbfJ49YXpb0VeJ6QDV8-JVstLfrF8hmZ99cshbQqKOapSke_V7OyocMZnrOD4aO9-Tkoqrn4VVPwgClWjkQDrItvlq1sf15du5qGJIUFF5eaJZ34QAuC-Kfj2aD34zk5vRdFviCbZVX6l4TawmqjOPM2YbJQ2mSJ84ljaZopDhHPDvnYKS-3be9ypNCY5xDDoKLzO0XvkHdr2ctVx45_Sh3gHKwlsMt2eFAtzvN20eY80VZDEF9MPZOxVZljhZk6If2UG87gt3a7GczbpV_nd0B99f_ht2RrNDke5-PDk6PX5BHHexWhSnCXbDaLa_8GvJ3G7AWIUfLzvjF9CxyPEhU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD4anQS8IK7aYIAl4IGHqI7tOM4DQl27amOjqqZN2luoL9kqlWQ0mVD_Gr-O49TpkEC87TWxrOj4s88lx98H8D5JtbUYuEbKGosJCsJYK08IUGibahYb09Iufp3Iw3Px5SK52IJf3V0Y31bZnYntQW0r42vkfZYygeEtgqZfhLaI6Wj8-fpH5BWk_J_WTk5jDZFjt_qJ6Vv96WiEa_2BsfHB2fAwCgoDkeEybiKRJlrZTEnuHKVGFE5owXnmBIYJnLqZsOggnTLSs9AYbuMscSzWxmlpmdQc570H2ylmRbQH2_sHk-nppsJDOcKbijUnKk5K-8s6FnEmUk9w8ocXbMUC_vIFrYMbP4ZHITIlgzWUnsCWK5_CgyCSfrV6BovhRrOQVAXxVavSkmk1Lxsynvu_7ugGyWBxiaZqrr7XBONh4vtIopHvkm9WYexwUd3YmrQlC4MBL9ErcuZakRC_G8jJfDQ4fQ7nd2LKF9Arq9LtADGFUVoy6kxCRSGVzhLrEkvTNJMM859d-NgZLzeBydwLaixyzGi8ofNbQ-_Cu83Y6zV_xz9H7fs12IzwnNvtg2p5mYctnLNEGYUpfTFzVMRGZpYWema5cDOmGcXP2utWMA8HQZ3fwvbl_1-_hfuI5_zkaHL8Ch4yf8mibRncg16zvHGvMfRp9JuAMQLf7hrWvwFOVBen
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+of+Ground+Point+Filtering+Algorithms+for+High-Density+Point+Clouds+Collected+by+Terrestrial+LiDAR&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Bailey%2C+Gene&rft.au=Li%2C+Yingkui&rft.au=McKinney%2C+Nathan&rft.au=Yoder%2C+Daniel&rft.date=2022-10-01&rft.issn=2072-4292&rft.eissn=2072-4292&rft.volume=14&rft.issue=19&rft.spage=4776&rft_id=info:doi/10.3390%2Frs14194776&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_rs14194776
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon