Thermogravimetric and Kinetic Analysis of High-Temperature Thermal Conversion of Pine Wood Sawdust under CO2/Ar
The gasification behavior of pine wood sawdust was investigated in CO2 with different heating rates of 5, 10, 15, and 20 °C/min from room temperature to 1400 °C by thermogravimetric analysis (TGA) and mass spectrometry (MS). It was also examined under Ar to compare the differences observed under CO2...
Saved in:
Published in | Energies (Basel) Vol. 14; no. 17; p. 5328 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.09.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The gasification behavior of pine wood sawdust was investigated in CO2 with different heating rates of 5, 10, 15, and 20 °C/min from room temperature to 1400 °C by thermogravimetric analysis (TGA) and mass spectrometry (MS). It was also examined under Ar to compare the differences observed under CO2 at heating rate of 10 °C/min. Kinetics of pine wood sawdust thermal decomposition was determined by the models of FWO, KAS and master plot method. TGA results revealed different reaction sections from pyrolysis to char gasification under CO2. The pyrolysis behavior was similar under CO2 and Ar and had a similar energy required value about 590 kJ/kg from 250 °C to 420 °C. CO, CH4, and H2 were the primary gases obtained from thermal decomposition, and the amounts of which in CO2 atmosphere were higher than those obtained in Ar. The average activation energy for pyrolysis under CO2 was 184.72 kJ/mol. |
---|---|
ISSN: | 1996-1073 1996-1073 |
DOI: | 10.3390/en14175328 |