Surface exciton emission of MgO crystals
MgO crystals have been exposed to vacuum ultraviolet (VUV) radiation from a synchrotron, with energies up to 9 eV, and the emitted light, at wavelengths above 200 nm, was observed. It is concluded that bulk excitons, play an important role in the diffusion of energy inside MgO crystals, resulting in...
Saved in:
Published in | Journal of physics. D, Applied physics Vol. 46; no. 36; pp. 365501 - 1-6 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Bristol
IOP Publishing
11.09.2013
Institute of Physics |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | MgO crystals have been exposed to vacuum ultraviolet (VUV) radiation from a synchrotron, with energies up to 9 eV, and the emitted light, at wavelengths above 200 nm, was observed. It is concluded that bulk excitons, play an important role in the diffusion of energy inside MgO crystals, resulting in 5.85 eV (212 nm) emission from the MgO terraces of large (0.2-2 µm) MgO : F crystals. In the case of aliovalent impurity doping, then the bulk exciton energy is also transferred to the Vk centres and 5.3 eV (235 nm) light is emitted. Both fluorine and silicon doping appear to promote UV surface emission, acting similarly to an ns2 ion inside MgO, while strong scandium doping is killing the surface emission completely. The 212 nm surface UV emission and the 235 nm bulk UV emission can be excited only at the bandgap edge. Broadband visible light, centred around 400 nm, is also emitted. Contrary to the UV emission, this is not generated when excited at the bandgap edge; instead, we find that it is only excited at sub-bandgap energies, with a maximum at the 5C surface excitation energy of 5.71 eV (217 nm) for the MgO terraces. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 0022-3727 1361-6463 |
DOI: | 10.1088/0022-3727/46/36/365501 |