Fast Channel Tracking for Terahertz Beamspace Massive MIMO Systems

The recent concept of beamspace multiple input multiple output (MIMO) with discrete lens array can utilize beam selection to reduce the number of radio-frequency chains (RF) required in terahertz (THz) massive MIMO systems. However, to achieve the capacity-approaching performance, beam selection req...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on vehicular technology Vol. 66; no. 7; pp. 5689 - 5696
Main Authors Gao, Xinyu, Dai, Linglong, Zhang, Yuan, Xie, Tian, Dai, Xiaoming, Wang, Zhaocheng
Format Journal Article
LanguageEnglish
Published New York IEEE 01.07.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The recent concept of beamspace multiple input multiple output (MIMO) with discrete lens array can utilize beam selection to reduce the number of radio-frequency chains (RF) required in terahertz (THz) massive MIMO systems. However, to achieve the capacity-approaching performance, beam selection requires information on a beamspace channel of large size. This is difficult to obtain since the user mobility usually leads to the fast variation of THz beamspace channels, and the conventional realtime channel estimation schemes involve unaffordable pilot overhead. To solve this problem, in this paper, we propose the a priori aided (PA) channel tracking scheme. Specifically, by considering a practical user motion model, we first excavate a temporal variation law of the physical direction between the base station and each mobile user. Then, based on this law and the special sparse structure of THz beamspace channels, we propose to utilize the obtained beamspace channels in the previous time slots to predict the prior information of the beamspace channel in the following time slot without channel estimation. Finally, aided by the obtained prior information, the time-varying beamspace channels can be tracked with low pilot overhead. Simulation results verify that to achieve the same accuracy, the proposed PA channel tracking scheme requires much lower pilot overhead and signal-to-noise ratio (SNR) than the conventional schemes.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0018-9545
1939-9359
DOI:10.1109/TVT.2016.2614994