Reduction of Fractionation of Lightweight Slurry to Geothermal Boreholes

When designing the cement slurry for casing string cementing in geothermal boreholes, the appropriate thermal conductivity is selected. In the zone of geothermal water, where thermal energy is collected, cement slurry is used, from which the cement sheath has high thermal conductivity. On the other...

Full description

Saved in:
Bibliographic Details
Published inEnergies (Basel) Vol. 14; no. 12; p. 3686
Main Authors Kremieniewski, Marcin, Jasiński, Bartłomiej, Zima, Grzegorz, Kut, Łukasz
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.06.2021
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:When designing the cement slurry for casing string cementing in geothermal boreholes, the appropriate thermal conductivity is selected. In the zone of geothermal water, where thermal energy is collected, cement slurry is used, from which the cement sheath has high thermal conductivity. On the other hand, the remaining part of the opening is sealed with slurry, from which the cement sheath will reduce thermal energy losses through appropriate thermal insulation. Cement slurry with appropriate thermal insulation includes light insulating materials. However, the use of such additives is very problematic as they are fractionated due to their low density. Therefore, measures should be taken to prevent fractionation of the cement slurry for sealing geothermal boreholes. This article presents the results of research on fractionation of cement slurries for sealing geothermal boreholes. 12 slurries were used for the tests. Six of them are based on class A cement, and six based on class G cement. This action shows the differences in fractionation depending on the binder used. However, the main area of research is determining the effectiveness of counteracting fractionation by the means used for this purpose. As a result of the conducted works, a very good improvement of the cement slurry stability is obtained after the introduction of xanthan gum, as well as filtration perlite. These measures prevent fractionation, so that the cement slurry has a homogeneous structure, and the cement sheath provides the required thermal insulation in the geothermal well.
ISSN:1996-1073
1996-1073
DOI:10.3390/en14123686