An End-to-End Compression Framework Based on Convolutional Neural Networks

Deep learning, e.g., convolutional neural networks (CNNs), has achieved great success in image processing and computer vision especially in high-level vision applications, such as recognition and understanding. However, it is rarely used to solve low-level vision problems such as image compression s...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on circuits and systems for video technology Vol. 28; no. 10; pp. 3007 - 3018
Main Authors Jiang, Feng, Tao, Wen, Liu, Shaohui, Ren, Jie, Guo, Xun, Zhao, Debin
Format Journal Article
LanguageEnglish
Published New York IEEE 01.10.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Deep learning, e.g., convolutional neural networks (CNNs), has achieved great success in image processing and computer vision especially in high-level vision applications, such as recognition and understanding. However, it is rarely used to solve low-level vision problems such as image compression studied in this paper. Here, we move forward a step and propose a novel compression framework based on CNNs. To achieve high-quality image compression at low bit rates, two CNNs are seamlessly integrated into an end-to-end compression framework. The first CNN, named compact convolutional neural network (ComCNN), learns an optimal compact representation from an input image, which preserves the structural information and is then encoded using an image codec (e.g., JPEG, JPEG2000, or BPG). The second CNN, named reconstruction convolutional neural network (RecCNN), is used to reconstruct the decoded image with high quality in the decoding end. To make two CNNs effectively collaborate, we develop a unified end-to-end learning algorithm to simultaneously learn ComCNN and RecCNN, which facilitates the accurate reconstruction of the decoded image using RecCNN. Such a design also makes the proposed compression framework compatible with existing image coding standards. Experimental results validate that the proposed compression framework greatly outperforms several compression frameworks that use existing image coding standards with the state-of-the-art deblocking or denoising post-processing methods.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1051-8215
1558-2205
DOI:10.1109/TCSVT.2017.2734838