A Software Reliability Model with a Weibull Fault Detection Rate Function Subject to Operating Environments

When software systems are introduced, these systems are used in field environments that are the same as or close to those used in the development-testing environments; however, they may also be used in many different locations that may differ from the environment in which they were developed and tes...

Full description

Saved in:
Bibliographic Details
Published inApplied sciences Vol. 7; no. 10; p. 983
Main Authors Song, Kwang, Chang, In, Pham, Hoang
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 25.09.2017
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:When software systems are introduced, these systems are used in field environments that are the same as or close to those used in the development-testing environments; however, they may also be used in many different locations that may differ from the environment in which they were developed and tested. As such, it is difficult to improve software reliability for a variety of reasons, such as a given environment, or a bug location in code. In this paper, we propose a new software reliability model that takes into account the uncertainty of operating environments. The explicit mean value function solution for the proposed model is presented. Examples are presented to illustrate the goodness of fit of the proposed model and several existing non-homogeneous Poisson process (NHPP) models and confidence intervals of all models based on two sets of failure data collected from software applications. The results show that the proposed model fits the data more closely than other existing NHPP models to a significant extent.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2076-3417
2076-3417
DOI:10.3390/app7100983