A Simple Neural-Network-Based Decoder for Short Binary Linear Block Codes
The conventional soft decision decoding (SDD) methods require various hard decision decoders (HDDs) based on different codes or re-manipulate the generator matrix by the complicated Gaussian elimination technique according to the bit reliability. This paper presents a general multi-class neural netw...
Saved in:
Published in | Applied sciences Vol. 13; no. 7; p. 4371 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.04.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The conventional soft decision decoding (SDD) methods require various hard decision decoders (HDDs) based on different codes or re-manipulate the generator matrix by the complicated Gaussian elimination technique according to the bit reliability. This paper presents a general multi-class neural network (NN)-based decoder for the short linear block codes, where no HDD and Gaussian elimination are required once the NN is constructed. This network architecture performs multi-classification to select the messages with high occurrence probabilities and chooses the best codeword on a maximum likelihood basis. Simulation results show that the developed approach outperforms the existing deep neural network (DNN)-based decoders in terms of decoding time and bit error rate (BER). The error-correcting performance is also superior to the conventional Chase-II algorithm and is close to the ordered statistics decoding (OSD) in most cases. For Bose–Chaudhuri–Hocquenghem (BCH) codes, the SNR is improved by 1dB to 4dB as the BER is 10−4. For the (23, 12) quadratic residue (QR) code, the SNR is improved by 2dB when the BER is 10−3. The developed NN-based decoder is quite general and applicable to various short linear block codes with good BER performance. |
---|---|
ISSN: | 2076-3417 2076-3417 |
DOI: | 10.3390/app13074371 |