Effect of impregnation conditions on prepreg properties and honeycomb core crush
The effects of fiber tension, line speed, and impregnation temperature and pressure in the prepregging process used to manufacture a commercial high temperature toughened epoxy prepreg were investigated in a Design of Experiments (DOE) to understand core crush in honeycomb composite structures. The...
Saved in:
Published in | Polymer composites Vol. 18; no. 1; pp. 90 - 99 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc., A Wiley Company
01.02.1997
Willey |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The effects of fiber tension, line speed, and impregnation temperature and pressure in the prepregging process used to manufacture a commercial high temperature toughened epoxy prepreg were investigated in a Design of Experiments (DOE) to understand core crush in honeycomb composite structures. The prepregs developed in this DOE were characterized by tack, permeation, optical microscopy, and frictional resistance. Of these methods, frictional resistance was found to correlate with core crush. Tack, permeation, and optical microscopy provided a basis for understanding this relationship through impregnation and morphology. Prepregs manufactured with high fiber tension showed greater crush and less frictional resistance than prepregs with manufactured low fiber tension. These low tension prepregs were found to have more fibers at the prepreg surface, allowing them to grip the adjacent surface and resist slippage. By identifying the key factors influencing honeycomb core crush, the prepregging process was modified, producing a crush‐resistant prepreg for end use manufacture. |
---|---|
Bibliography: | ArticleID:PC10264 ark:/67375/WNG-RXTFJ6B7-L istex:DB5CE3A32AE9CB3B19DA3E5DFC8A751B2B9759AA ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 0272-8397 1548-0569 |
DOI: | 10.1002/pc.10264 |