A 3D densely connected convolution neural network with connection-wise attention mechanism for Alzheimer's disease classification

Alzheimer's disease (AD) is a progressive and irreversible neurodegenerative disease. In recent years, machine learning methods have been widely used on analysis of neuroimage for quantitative evaluation and computer-aided diagnosis of AD or prediction on the conversion from mild cognitive impa...

Full description

Saved in:
Bibliographic Details
Published inMagnetic resonance imaging Vol. 78; pp. 119 - 126
Main Authors Zhang, Jie, Zheng, Bowen, Gao, Ang, Feng, Xin, Liang, Dong, Long, Xiaojing
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier Inc 01.05.2021
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Alzheimer's disease (AD) is a progressive and irreversible neurodegenerative disease. In recent years, machine learning methods have been widely used on analysis of neuroimage for quantitative evaluation and computer-aided diagnosis of AD or prediction on the conversion from mild cognitive impairment (MCI) to AD. In this study, we aimed to develop a new deep learning method to detect or predict AD in an efficient way. We proposed a densely connected convolution neural network with connection-wise attention mechanism to learn the multi-level features of brain MR images for AD classification. We used the densely connected neural network to extract multi-scale features from pre-processed images, and connection-wise attention mechanism was applied to combine connections among features from different layers to hierarchically transform the MR images into more compact high-level features. Furthermore, we extended the convolution operation to 3D to capture the spatial information of MRI. The features extracted from each 3D convolution layer were integrated with features from all preceding layers with different attention, and were finally used for classification. Our method was evaluated on the baseline MRI of 968 subjects from ADNI database to discriminate (1) AD versus healthy subjects, (2) MCI converters versus healthy subjects, and (3) MCI converters versus non-converters. The proposed method achieved 97.35% accuracy for distinguishing AD patients from healthy control, 87.82% for MCI converters against healthy control, and 78.79% for MCI converters against non-converters. Compared with some neural networks and methods reported in recent studies, the classification performance of our proposed algorithm was among the top ranks and improved in discriminating MCI subjects who were in high risks of conversion to AD. Deep learning techniques provide a powerful tool to explore minute but intricate characteristics in MR images which may facilitate early diagnosis and prediction of AD.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0730-725X
1873-5894
1873-5894
DOI:10.1016/j.mri.2021.02.001