Numerical methods for stochastic partial differential equations with multiple scales

A new method for solving numerically stochastic partial differential equations (SPDEs) with multiple scales is presented. The method combines a spectral method with the heterogeneous multiscale method (HMM) presented in [W. E, D. Liu, E. Vanden-Eijnden, Analysis of multiscale methods for stochastic...

Full description

Saved in:
Bibliographic Details
Published inJournal of computational physics Vol. 231; no. 6; pp. 2482 - 2497
Main Authors Abdulle, A., Pavliotis, G.A.
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Inc 20.03.2012
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A new method for solving numerically stochastic partial differential equations (SPDEs) with multiple scales is presented. The method combines a spectral method with the heterogeneous multiscale method (HMM) presented in [W. E, D. Liu, E. Vanden-Eijnden, Analysis of multiscale methods for stochastic differential equations, Commun. Pure Appl. Math., 58(11) (2005) 1544–1585]. The class of problems that we consider are SPDEs with quadratic nonlinearities that were studied in [D. Blömker, M. Hairer, G.A. Pavliotis, Multiscale analysis for stochastic partial differential equations with quadratic nonlinearities, Nonlinearity, 20(7) (2007) 1721–1744]. For such SPDEs an amplitude equation which describes the effective dynamics at long time scales can be rigorously derived for both advective and diffusive time scales. Our method, based on micro and macro solvers, allows to capture numerically the amplitude equation accurately at a cost independent of the small scales in the problem. Numerical experiments illustrate the behavior of the proposed method.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0021-9991
1090-2716
DOI:10.1016/j.jcp.2011.11.039