Nonylphenol-induced thymocyte apoptosis involved caspase-3 activation and mitochondrial depolarization

Although the effect of 4-nonylphenol on cells of immune system have long been recognized, little is known about the effect of 4-nonylphenol on the induction of apoptosis and related signaling events in the lymphoid cells. In the present study, we used cultured thymocytes of mice to investigate the a...

Full description

Saved in:
Bibliographic Details
Published inMolecular immunology Vol. 43; no. 7; pp. 915 - 926
Main Authors Yao, Genhong, Yang, Lingsong, Hu, Yali, Liang, Jun, Liang, Junfeng, Hou, Yayi
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.03.2006
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Although the effect of 4-nonylphenol on cells of immune system have long been recognized, little is known about the effect of 4-nonylphenol on the induction of apoptosis and related signaling events in the lymphoid cells. In the present study, we used cultured thymocytes of mice to investigate the ability of 4-nonylphenol to induce the apoptosis of thymocytes and to explore the role of signal transduction pathway leading to apoptosis. The results showed that the cytotoxic effects of 4-nonyphenol involved DNA fragmentation (DNA ladder), characteristic of apoptosis. Staining of 4-nonyphenol-treated thymocytes with DNA-binding fluorochrome Hoechst 33258 showed the typical apoptotic nuclei condensation and fragmentation of chromatin. The rates of apoptosis of the 4-nonylphenol-treated thymocytes increased significantly at 4 and 6 h, which were determined by analysis of hypodiploid cells and FITC-Annexin V and PI double staining. Flow cytometer analysis also revealed that the loss of mitochondrial membrane potential and increased activity of caspase-3 occurred concomitantly with the onset of 4-nonyphenol-induced apoptosis. Furthermore, a caspase-3 inhibitor, z-DEVD-fmk protected thymocytes from apoptosis induced by 4-nonyphenol. These results suggest that 4-nonylphenol induces thymocyte apoptosis via caspase-3 activation and mitochondrial depolarization.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0161-5890
1872-9142
DOI:10.1016/j.molimm.2005.06.031