Validation of two-layer model for underexpanded hydrogen jets
Previous studies have shown that the two-layer model more accurately predicts hydrogen dispersion than the conventional notional nozzle models without significantly increasing the computational expense. However, the model was only validated for predicting the concentration distribution and has not b...
Saved in:
Published in | International journal of hydrogen energy Vol. 46; no. 23; pp. 12545 - 12554 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
31.03.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Previous studies have shown that the two-layer model more accurately predicts hydrogen dispersion than the conventional notional nozzle models without significantly increasing the computational expense. However, the model was only validated for predicting the concentration distribution and has not been adequately validated for predicting the velocity distributions. In the present study, particle imaging velocimetry (PIV) was used to measure the velocity field of an underexpanded hydrogen jet released at 10 bar from a 1.5 mm diameter orifice. The two-layer model was the used to calculate the inlet conditions for a two-dimensional axisymmetric CFD model to simulate the hydrogen jet downstream of the Mach disk. The predicted velocity spreading and centerline decay rates agreed well with the PIV measurements. The predicted concentration distribution was consistent with data from previous planar Rayleigh scattering measurements used to verify the concentration distribution predictions in an earlier study. The jet spreading was also simulated using several widely used notional nozzle models combined with the integral plume model for comparison. These results show that the velocity and concentration distributions are both better predicted by the two-layer model than the notional nozzle models to complement previous studies verifying only the predicted concentration profiles. Thus, this study shows that the two-layer model can accurately predict the jet velocity distributions as well as the concentration distributions as verified earlier. Though more validation studies are needed to improve confidence in the model and increase the range of validity, the present work indicates that the two-layer model is a promising tool for fast, accurate predictions of the flow fields of underexpanded hydrogen jets.
•The two-layer model has been validated using concentration and velocity data.•The two-layer model gave better predictions than notional nozzle models.•CFD modeling was significantly simplified by using the two-layer model. |
---|---|
AbstractList | Previous studies have shown that the two-layer model more accurately predicts hydrogen dispersion than the conventional notional nozzle models without significantly increasing the computational expense. However, the model was only validated for predicting the concentration distribution and has not been adequately validated for predicting the velocity distributions. In the present study, particle imaging velocimetry (PIV) was used to measure the velocity field of an underexpanded hydrogen jet released at 10 bar from a 1.5 mm diameter orifice. The two-layer model was the used to calculate the inlet conditions for a two-dimensional axisymmetric CFD model to simulate the hydrogen jet downstream of the Mach disk. The predicted velocity spreading and centerline decay rates agreed well with the PIV measurements. The predicted concentration distribution was consistent with data from previous planar Rayleigh scattering measurements used to verify the concentration distribution predictions in an earlier study. The jet spreading was also simulated using several widely used notional nozzle models combined with the integral plume model for comparison. These results show that the velocity and concentration distributions are both better predicted by the two-layer model than the notional nozzle models to complement previous studies verifying only the predicted concentration profiles. Thus, this study shows that the two-layer model can accurately predict the jet velocity distributions as well as the concentration distributions as verified earlier. Though more validation studies are needed to improve confidence in the model and increase the range of validity, the present work indicates that the two-layer model is a promising tool for fast, accurate predictions of the flow fields of underexpanded hydrogen jets.
•The two-layer model has been validated using concentration and velocity data.•The two-layer model gave better predictions than notional nozzle models.•CFD modeling was significantly simplified by using the two-layer model. |
Author | Chowdhury, Bikram Roy Christopher, David M. Hecht, Ethan S. Li, Xuefang He, Qian |
Author_xml | – sequence: 1 givenname: Xuefang orcidid: 0000-0003-1846-5626 surname: Li fullname: Li, Xuefang organization: Institute of Thermal Science and Technology, Shandong University, Jinan 250061, China – sequence: 2 givenname: Bikram Roy orcidid: 0000-0002-3623-3477 surname: Chowdhury fullname: Chowdhury, Bikram Roy organization: Combustion Research Facility, Sandia National Laboratories, Livermore, CA 94550, USA – sequence: 3 givenname: Qian surname: He fullname: He, Qian organization: Institute of Thermal Science and Technology, Shandong University, Jinan 250061, China – sequence: 4 givenname: David M. surname: Christopher fullname: Christopher, David M. email: dmc@tsinghua.edu.cn organization: Key Laboratory of Thermal Science and Power Engineering of Ministry of Education, Tsinghua University, Beijing 100084, China – sequence: 5 givenname: Ethan S. surname: Hecht fullname: Hecht, Ethan S. email: ehecht@sandia.gov organization: Combustion Research Facility, Sandia National Laboratories, Livermore, CA 94550, USA |
BookMark | eNqFkMtKAzEUhoNUsK2-gswLzHgySTOZhaAUrULBjboNaXKiGaaTkoyXvr0p1bWrb_Vf-GZkMoQBCbmkUFGg4qqrfPe-tzhgVUMNFchMfkKmVDZtybhsJmQKTEDJaNuekVlKHQBtgLdTcv2qe2_16MNQBFeMX6Hs9R5jsQ0W-8KFWHwMFiN-73SmLfJSDG84FB2O6ZycOt0nvPjlnLzc3z0vH8r10-pxebsuTZ4dS9QcaiFoUzPKQTq3kSZ_EQuDDplx0iKVouHQyEbKxUYgopFa2wVjdiMomxNx7DUxpBTRqV30Wx33ioI6SFCd-pOgDhIUyEyegzfHIOZ3nx6jSsbjYND6iGZUNvj_Kn4AfYVrcQ |
CitedBy_id | crossref_primary_10_1016_j_ijhydene_2023_07_092 crossref_primary_10_1016_j_rser_2021_111390 crossref_primary_10_1016_j_egyr_2022_04_067 crossref_primary_10_1016_j_energy_2024_131027 crossref_primary_10_1016_j_ijhydene_2023_05_157 crossref_primary_10_1016_j_ijhydene_2023_03_440 crossref_primary_10_1016_j_ijhydene_2023_11_281 crossref_primary_10_1002_ese3_1132 crossref_primary_10_1016_j_ijhydene_2023_04_209 crossref_primary_10_1016_j_ijhydene_2023_09_282 crossref_primary_10_1016_j_fuel_2023_128132 crossref_primary_10_1016_j_psep_2023_07_048 crossref_primary_10_1016_j_psep_2022_12_094 crossref_primary_10_1016_j_est_2024_110764 crossref_primary_10_1016_j_psep_2023_05_021 crossref_primary_10_1016_j_ijhydene_2022_01_082 crossref_primary_10_1016_j_ijhydene_2022_12_052 crossref_primary_10_1016_j_ijhydene_2024_06_099 crossref_primary_10_1016_j_ijhydene_2022_07_019 crossref_primary_10_1016_j_ijhydene_2022_08_110 crossref_primary_10_1016_j_ijhydene_2021_10_235 |
Cites_doi | 10.1016/j.ijhydene.2012.03.063 10.1016/j.ijhydene.2010.03.075 10.1016/j.ijhydene.2013.01.052 10.1016/j.ijhydene.2008.05.041 10.1080/00102208408923739 10.1016/j.ijhydene.2015.10.071 10.1016/j.ijhydene.2016.07.002 10.1016/j.ijhydene.2018.05.036 10.1016/j.coche.2014.04.004 10.1080/00102208708952575 10.1063/1.1513796 10.1016/j.ijhydene.2019.02.208 10.1016/j.ijhydene.2006.08.037 10.1016/j.ijhydene.2016.05.214 10.1016/j.ijhydene.2012.08.106 10.1016/j.ijhydene.2018.03.089 |
ContentType | Journal Article |
Copyright | 2020 Hydrogen Energy Publications LLC |
Copyright_xml | – notice: 2020 Hydrogen Energy Publications LLC |
DBID | AAYXX CITATION |
DOI | 10.1016/j.ijhydene.2020.08.204 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-3487 |
EndPage | 12554 |
ExternalDocumentID | 10_1016_j_ijhydene_2020_08_204 S0360319920332316 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AARLI AAXUO ABFNM ABJNI ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADECG ADEZE AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHIDL AIEXJ AIKHN AITUG AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA HZ~ IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCC SDF SDG SES SPC SPCBC SSK SSM SSR SSZ T5K TN5 XPP ZMT ~G- 29J AAQXK AAXKI AAYXX ABXDB ACNNM ADMUD AFJKZ AKRWK ASPBG AVWKF AZFZN CITATION EJD FEDTE FGOYB G-2 HVGLF R2- RIG SAC SCB SEW T9H WUQ |
ID | FETCH-LOGICAL-c360t-ea4026617231408ffb8c31965cefe3cf8de186740787885b6eeec8aad533db613 |
IEDL.DBID | AIKHN |
ISSN | 0360-3199 |
IngestDate | Thu Sep 26 15:54:41 EDT 2024 Fri Feb 23 02:47:55 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 23 |
Keywords | Underexpanded jets Hydrogen safety Two-layer model PIV |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c360t-ea4026617231408ffb8c31965cefe3cf8de186740787885b6eeec8aad533db613 |
ORCID | 0000-0002-3623-3477 0000-0003-1846-5626 |
OpenAccessLink | https://www.sciencedirect.com/science/article/am/pii/S0360319920332316 |
PageCount | 10 |
ParticipantIDs | crossref_primary_10_1016_j_ijhydene_2020_08_204 elsevier_sciencedirect_doi_10_1016_j_ijhydene_2020_08_204 |
PublicationCentury | 2000 |
PublicationDate | 2021-03-31 |
PublicationDateYYYYMMDD | 2021-03-31 |
PublicationDate_xml | – month: 03 year: 2021 text: 2021-03-31 day: 31 |
PublicationDecade | 2020 |
PublicationTitle | International journal of hydrogen energy |
PublicationYear | 2021 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Harstad, Bellan (bib7) 2006; 36 Groth, Hecht (bib17) 2017; 42 Li, Bai, Zhang, Song, Jiang, Grouset (bib3) 2019; 44 Molkov, Saffers (bib9) 2013; 38 Winters, Houf (bib14) 2011; 36 Hwang, Varma (bib2) 2014; 5 Houf, Winters (bib15) 2013; 38 Birch, Brown, Dodson, Swaffield (bib4) 1984; 36 Tang, Dzieminska, Asahara, Hayashi, Tsuboi (bib11) 2018; 43 Hu, Christopher, Li (bib12) 2018; 43 Malmström, Kirkpatrick, Christensen, Knappmiller (bib22) 1997; 52 Schefer, Houf, Williams (bib23) 2008; 33 Yüceil, Ötügen (bib6) 2002; 14 Ruggles, Ekoto (bib13) 2012; 37 Groth, Hecht, Reynolds (bib18) 2017 Molkov, Makarov, Bragin (bib20) 2009 Birch, Hughes, Swaffield (bib5) 1987; 52 Li, Christopher, Hecht, Ekoto (bib10) 2017; 42 Gebhart, Hilder, Kelleher (bib16) 1984 Molkov (bib1) 2012 Li, Hecht, Christopher (bib19) 2016; 41 Schefer, Houf, Williams, Bourne, Colton (bib8) 2007; 32 Hecht, Li, Ekoto (bib21) 2015 Malmström (10.1016/j.ijhydene.2020.08.204_bib22) 1997; 52 Houf (10.1016/j.ijhydene.2020.08.204_bib15) 2013; 38 Hu (10.1016/j.ijhydene.2020.08.204_bib12) 2018; 43 Molkov (10.1016/j.ijhydene.2020.08.204_bib20) 2009 Groth (10.1016/j.ijhydene.2020.08.204_bib17) 2017; 42 Hecht (10.1016/j.ijhydene.2020.08.204_bib21) 2015 Ruggles (10.1016/j.ijhydene.2020.08.204_bib13) 2012; 37 Tang (10.1016/j.ijhydene.2020.08.204_bib11) 2018; 43 Schefer (10.1016/j.ijhydene.2020.08.204_bib8) 2007; 32 Molkov (10.1016/j.ijhydene.2020.08.204_bib9) 2013; 38 Birch (10.1016/j.ijhydene.2020.08.204_bib5) 1987; 52 Molkov (10.1016/j.ijhydene.2020.08.204_bib1) 2012 Li (10.1016/j.ijhydene.2020.08.204_bib10) 2017; 42 Hwang (10.1016/j.ijhydene.2020.08.204_bib2) 2014; 5 Schefer (10.1016/j.ijhydene.2020.08.204_bib23) 2008; 33 Li (10.1016/j.ijhydene.2020.08.204_bib19) 2016; 41 Li (10.1016/j.ijhydene.2020.08.204_bib3) 2019; 44 Harstad (10.1016/j.ijhydene.2020.08.204_bib7) 2006; 36 Birch (10.1016/j.ijhydene.2020.08.204_bib4) 1984; 36 Groth (10.1016/j.ijhydene.2020.08.204_bib18) 2017 Gebhart (10.1016/j.ijhydene.2020.08.204_bib16) 1984 Yüceil (10.1016/j.ijhydene.2020.08.204_bib6) 2002; 14 Winters (10.1016/j.ijhydene.2020.08.204_bib14) 2011; 36 |
References_xml | – volume: 52 start-page: 161 year: 1987 end-page: 171 ident: bib5 article-title: Velocity decay of high pressure jets publication-title: Combust Sci Technol contributor: fullname: Swaffield – volume: 32 start-page: 2081 year: 2007 end-page: 2093 ident: bib8 article-title: Characterization of high-pressure, underexpanded hydrogen-jet flames publication-title: Int J Hydrogen Energy contributor: fullname: Colton – volume: 38 start-page: 8092 year: 2013 end-page: 8099 ident: bib15 article-title: Simulation of high-pressure liquid hydrogen releases publication-title: Int J Hydrogen Energy contributor: fullname: Winters – volume: 43 start-page: 9094 year: 2018 end-page: 9109 ident: bib11 article-title: Numerical investigation of a high pressure hydrogen jet of 82 MPa with adaptive mesh refinement: concentration and velocity distributions publication-title: Int J Hydrogen Energy contributor: fullname: Tsuboi – volume: 36 start-page: 2545 year: 2006 end-page: 2554 ident: bib7 article-title: Global analysis and parametric dependencies for potential unintended hydrogen-fuel releases publication-title: Combust Flame contributor: fullname: Bellan – volume: 52 start-page: 161 year: 1997 end-page: 171 ident: bib22 article-title: Centreline velocity decay measurements in low-velocity axisymmetric jets publication-title: J Fluid Mech contributor: fullname: Knappmiller – volume: 43 start-page: 13649 year: 2018 end-page: 13658 ident: bib12 article-title: Simplified partitioning model to simulate high pressure under-expanded jet flows impinging vertical obstacles publication-title: Int J Hydrogen Energy contributor: fullname: Li – volume: 44 start-page: 10677 year: 2019 end-page: 10693 ident: bib3 article-title: Review on the research of hydrogen storage system fast refueling in fuel cell vehicle publication-title: Int J Hydrogen Energy contributor: fullname: Grouset – volume: 37 start-page: 17549 year: 2012 end-page: 17560 ident: bib13 article-title: Ignitability and mixing of underexpanded hydrogen jets publication-title: Int J Hydrogen Energy contributor: fullname: Ekoto – volume: 42 start-page: 7457 year: 2017 end-page: 7466 ident: bib10 article-title: Comparison of two-layer model for hydrogen and helium jets with notional nozzle model predictions and experimental data for pressures up to 35 MPa publication-title: Int J Hydrogen Energy contributor: fullname: Ekoto – volume: 41 start-page: 1348 year: 2016 end-page: 1358 ident: bib19 article-title: Validation of a reduced-order jet model for subsonic and underexpanded hydrogen jets publication-title: Int J Hydrogen Energy contributor: fullname: Christopher – year: 2015 ident: bib21 article-title: Validated equivalent source model for an underexpanded hydrogen jet publication-title: International conference on hydrogen safety, yokohama, Japan contributor: fullname: Ekoto – year: 2009 ident: bib20 article-title: Physics and modelling of underexpanded jets and hydrogen dispersion in atmosphere publication-title: The 24th international conference on interaction of intense energy fluxes with matter contributor: fullname: Bragin – volume: 14 start-page: 4206 year: 2002 ident: bib6 article-title: Scaling parameters for underexpanded supersonic jets publication-title: Phys Fluids contributor: fullname: Ötügen – start-page: 1 year: 1984 end-page: 57 ident: bib16 article-title: The diffusion of turbulent buoyant jets publication-title: Adv Heat Tran contributor: fullname: Kelleher – volume: 42 start-page: 7485 year: 2017 end-page: 7493 ident: bib17 article-title: HyRAM: a methodology and toolkit for quantitative risk assessment of hydrogen systems publication-title: Int J Hydrogen Energy contributor: fullname: Hecht – volume: 36 start-page: 3913 year: 2011 end-page: 3921 ident: bib14 article-title: Simulation of small-scale releases from liquid hydrogen storage systems publication-title: Int J Hydrogen Energy contributor: fullname: Houf – volume: 36 start-page: 249 year: 1984 end-page: 261 ident: bib4 article-title: The structure and concentration decay of high pressure jets of natural gas publication-title: Combust Sci Technol contributor: fullname: Swaffield – volume: 33 start-page: 6373 year: 2008 end-page: 6384 ident: bib23 article-title: Investigation of small-scale unintended releases of hydrogen: momentum-dominated regime publication-title: Int J Hydrogen Energy contributor: fullname: Williams – year: 2017 ident: bib18 article-title: Methodology for assessing the safety of hydrogen systems: HyRAM 1.1 technical reference manual contributor: fullname: Reynolds – year: 2012 ident: bib1 article-title: Fundamentals of hydrogen safety engineering contributor: fullname: Molkov – volume: 38 start-page: 8141 year: 2013 end-page: 8158 ident: bib9 article-title: Hydrogen jet flames publication-title: Int J Hydrogen Energy contributor: fullname: Saffers – volume: 5 start-page: 42 year: 2014 end-page: 48 ident: bib2 article-title: Hydrogen storage for fuel cell vehicles publication-title: Curr Opin Chem Eng contributor: fullname: Varma – volume: 37 start-page: 17549 year: 2012 ident: 10.1016/j.ijhydene.2020.08.204_bib13 article-title: Ignitability and mixing of underexpanded hydrogen jets publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2012.03.063 contributor: fullname: Ruggles – volume: 36 start-page: 3913 year: 2011 ident: 10.1016/j.ijhydene.2020.08.204_bib14 article-title: Simulation of small-scale releases from liquid hydrogen storage systems publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2010.03.075 contributor: fullname: Winters – year: 2009 ident: 10.1016/j.ijhydene.2020.08.204_bib20 article-title: Physics and modelling of underexpanded jets and hydrogen dispersion in atmosphere contributor: fullname: Molkov – volume: 38 start-page: 8092 year: 2013 ident: 10.1016/j.ijhydene.2020.08.204_bib15 article-title: Simulation of high-pressure liquid hydrogen releases publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2013.01.052 contributor: fullname: Houf – volume: 33 start-page: 6373 year: 2008 ident: 10.1016/j.ijhydene.2020.08.204_bib23 article-title: Investigation of small-scale unintended releases of hydrogen: momentum-dominated regime publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2008.05.041 contributor: fullname: Schefer – year: 2017 ident: 10.1016/j.ijhydene.2020.08.204_bib18 contributor: fullname: Groth – volume: 36 start-page: 249 year: 1984 ident: 10.1016/j.ijhydene.2020.08.204_bib4 article-title: The structure and concentration decay of high pressure jets of natural gas publication-title: Combust Sci Technol doi: 10.1080/00102208408923739 contributor: fullname: Birch – volume: 41 start-page: 1348 year: 2016 ident: 10.1016/j.ijhydene.2020.08.204_bib19 article-title: Validation of a reduced-order jet model for subsonic and underexpanded hydrogen jets publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2015.10.071 contributor: fullname: Li – volume: 42 start-page: 7485 year: 2017 ident: 10.1016/j.ijhydene.2020.08.204_bib17 article-title: HyRAM: a methodology and toolkit for quantitative risk assessment of hydrogen systems publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2016.07.002 contributor: fullname: Groth – year: 2015 ident: 10.1016/j.ijhydene.2020.08.204_bib21 article-title: Validated equivalent source model for an underexpanded hydrogen jet contributor: fullname: Hecht – volume: 36 start-page: 2545 year: 2006 ident: 10.1016/j.ijhydene.2020.08.204_bib7 article-title: Global analysis and parametric dependencies for potential unintended hydrogen-fuel releases publication-title: Combust Flame contributor: fullname: Harstad – volume: 43 start-page: 13649 year: 2018 ident: 10.1016/j.ijhydene.2020.08.204_bib12 article-title: Simplified partitioning model to simulate high pressure under-expanded jet flows impinging vertical obstacles publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2018.05.036 contributor: fullname: Hu – volume: 5 start-page: 42 year: 2014 ident: 10.1016/j.ijhydene.2020.08.204_bib2 article-title: Hydrogen storage for fuel cell vehicles publication-title: Curr Opin Chem Eng doi: 10.1016/j.coche.2014.04.004 contributor: fullname: Hwang – year: 2012 ident: 10.1016/j.ijhydene.2020.08.204_bib1 contributor: fullname: Molkov – volume: 52 start-page: 161 year: 1987 ident: 10.1016/j.ijhydene.2020.08.204_bib5 article-title: Velocity decay of high pressure jets publication-title: Combust Sci Technol doi: 10.1080/00102208708952575 contributor: fullname: Birch – volume: 14 start-page: 4206 year: 2002 ident: 10.1016/j.ijhydene.2020.08.204_bib6 article-title: Scaling parameters for underexpanded supersonic jets publication-title: Phys Fluids doi: 10.1063/1.1513796 contributor: fullname: Yüceil – volume: 44 start-page: 10677 year: 2019 ident: 10.1016/j.ijhydene.2020.08.204_bib3 article-title: Review on the research of hydrogen storage system fast refueling in fuel cell vehicle publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2019.02.208 contributor: fullname: Li – volume: 32 start-page: 2081 year: 2007 ident: 10.1016/j.ijhydene.2020.08.204_bib8 article-title: Characterization of high-pressure, underexpanded hydrogen-jet flames publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2006.08.037 contributor: fullname: Schefer – start-page: 1 year: 1984 ident: 10.1016/j.ijhydene.2020.08.204_bib16 article-title: The diffusion of turbulent buoyant jets publication-title: Adv Heat Tran contributor: fullname: Gebhart – volume: 42 start-page: 7457 year: 2017 ident: 10.1016/j.ijhydene.2020.08.204_bib10 article-title: Comparison of two-layer model for hydrogen and helium jets with notional nozzle model predictions and experimental data for pressures up to 35 MPa publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2016.05.214 contributor: fullname: Li – volume: 38 start-page: 8141 year: 2013 ident: 10.1016/j.ijhydene.2020.08.204_bib9 article-title: Hydrogen jet flames publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2012.08.106 contributor: fullname: Molkov – volume: 43 start-page: 9094 year: 2018 ident: 10.1016/j.ijhydene.2020.08.204_bib11 article-title: Numerical investigation of a high pressure hydrogen jet of 82 MPa with adaptive mesh refinement: concentration and velocity distributions publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2018.03.089 contributor: fullname: Tang – volume: 52 start-page: 161 year: 1997 ident: 10.1016/j.ijhydene.2020.08.204_bib22 article-title: Centreline velocity decay measurements in low-velocity axisymmetric jets publication-title: J Fluid Mech contributor: fullname: Malmström |
SSID | ssj0017049 |
Score | 2.4933565 |
Snippet | Previous studies have shown that the two-layer model more accurately predicts hydrogen dispersion than the conventional notional nozzle models without... |
SourceID | crossref elsevier |
SourceType | Aggregation Database Publisher |
StartPage | 12545 |
SubjectTerms | Hydrogen safety PIV Two-layer model Underexpanded jets |
Title | Validation of two-layer model for underexpanded hydrogen jets |
URI | https://dx.doi.org/10.1016/j.ijhydene.2020.08.204 |
Volume | 46 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED71scCAeIrykgdWNyHvDAxVRVVAdIGiblFin0Uj1FQlCFj47ZwTBxUxMDBFinKKc7HvvrPvvgM498kqhtIPOaKP3POymKdeKLj0AlQyltKt6BjuJsF46t3M_FkLhk0tjE6rNLa_tumVtTZ3LKNNazmfW_f0Fl2CEzu26xJKCdrQJXfkRB3oDq5vx5Pvw4TQoGB6nmuBtULhvD_Pnz5ohWvGTMfWbJ6O6dn2y0et-Z3RNmwZwMgG9Zh2oIWLXdhcoxHcg8tHAtN1byRWKFa-Ffw5JSjNqjY3jGAp06ViK3xf6i1jyWgsq4JmDsuxfNmH6ejqYTjmpi0CF_QFJceUYr5AIw-XoqNIqSwSeiH5AhW6QkUSNUudPqCj-NbPAkQUUZpKQnYyI_d9AJ1FscBDYBT-ZoFNGE9QoOfEKhZKOFEqXLR94TqiB1ajiGRZs18kTVpYnjSqS7TqEjuiq9eDuNFX8uM_JmSi_5A9-ofsMWw4OtukqhY8gU65esVTggtldgbt_ufFmZkUX9DDv9U |
link.rule.ids | 315,783,787,4509,24128,27936,27937,45597,45691 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZKOwAD4inK0wOrSZR3BoaqokrpY6FF3azEPotGqK1KEPDvOScOKmJgYIoU5RTn4rv7zvZ9R8iNj14xlH7IAHxgnpfFLPVCwaQXgJKxlG5JxzAaB8nUe5j5swbp1rUw-lil8f2VTy-9tbljGW1aq_ncesS36BKc2LFdF1FKsEVaiAZitM5Wpz9Ixt-bCaFBwfg80wIbhcL57Tx__kQL14yZjq3ZPB3Ts-1XjNqIO719smcAI-1UYzogDVgckt0NGsEjcveEYLrqjUSXihbvS_aSIpSmZZsbirCU6lKxNXys9JKxpDiW9RJnDs2heD0m0979pJsw0xaBCfyCgkGKOV-gkYeL2VGkVBYJbUi-AAWuUJEEzVKnN-gwv_WzAABElKYSkZ3MMHyfkOZiuYBTQjH9zQIbMZ7ARM-JVSyUcKJUuGD7wnVEm1i1IviqYr_g9bGwnNeq41p13I7w6rVJXOuL__iPHF30H7Jn_5C9JtvJZDTkw_54cE52HH3ypKwcvCDNYv0GlwgdiuzKTI0vekvByQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Validation+of+two-layer+model+for+underexpanded+hydrogen+jets&rft.jtitle=International+journal+of+hydrogen+energy&rft.au=Li%2C+Xuefang&rft.au=Chowdhury%2C+Bikram+Roy&rft.au=He%2C+Qian&rft.au=Christopher%2C+David+M.&rft.date=2021-03-31&rft.pub=Elsevier+Ltd&rft.issn=0360-3199&rft.eissn=1879-3487&rft.volume=46&rft.issue=23&rft.spage=12545&rft.epage=12554&rft_id=info:doi/10.1016%2Fj.ijhydene.2020.08.204&rft.externalDocID=S0360319920332316 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-3199&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-3199&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-3199&client=summon |