Validation of two-layer model for underexpanded hydrogen jets

Previous studies have shown that the two-layer model more accurately predicts hydrogen dispersion than the conventional notional nozzle models without significantly increasing the computational expense. However, the model was only validated for predicting the concentration distribution and has not b...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of hydrogen energy Vol. 46; no. 23; pp. 12545 - 12554
Main Authors Li, Xuefang, Chowdhury, Bikram Roy, He, Qian, Christopher, David M., Hecht, Ethan S.
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 31.03.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Previous studies have shown that the two-layer model more accurately predicts hydrogen dispersion than the conventional notional nozzle models without significantly increasing the computational expense. However, the model was only validated for predicting the concentration distribution and has not been adequately validated for predicting the velocity distributions. In the present study, particle imaging velocimetry (PIV) was used to measure the velocity field of an underexpanded hydrogen jet released at 10 bar from a 1.5 mm diameter orifice. The two-layer model was the used to calculate the inlet conditions for a two-dimensional axisymmetric CFD model to simulate the hydrogen jet downstream of the Mach disk. The predicted velocity spreading and centerline decay rates agreed well with the PIV measurements. The predicted concentration distribution was consistent with data from previous planar Rayleigh scattering measurements used to verify the concentration distribution predictions in an earlier study. The jet spreading was also simulated using several widely used notional nozzle models combined with the integral plume model for comparison. These results show that the velocity and concentration distributions are both better predicted by the two-layer model than the notional nozzle models to complement previous studies verifying only the predicted concentration profiles. Thus, this study shows that the two-layer model can accurately predict the jet velocity distributions as well as the concentration distributions as verified earlier. Though more validation studies are needed to improve confidence in the model and increase the range of validity, the present work indicates that the two-layer model is a promising tool for fast, accurate predictions of the flow fields of underexpanded hydrogen jets. •The two-layer model has been validated using concentration and velocity data.•The two-layer model gave better predictions than notional nozzle models.•CFD modeling was significantly simplified by using the two-layer model.
AbstractList Previous studies have shown that the two-layer model more accurately predicts hydrogen dispersion than the conventional notional nozzle models without significantly increasing the computational expense. However, the model was only validated for predicting the concentration distribution and has not been adequately validated for predicting the velocity distributions. In the present study, particle imaging velocimetry (PIV) was used to measure the velocity field of an underexpanded hydrogen jet released at 10 bar from a 1.5 mm diameter orifice. The two-layer model was the used to calculate the inlet conditions for a two-dimensional axisymmetric CFD model to simulate the hydrogen jet downstream of the Mach disk. The predicted velocity spreading and centerline decay rates agreed well with the PIV measurements. The predicted concentration distribution was consistent with data from previous planar Rayleigh scattering measurements used to verify the concentration distribution predictions in an earlier study. The jet spreading was also simulated using several widely used notional nozzle models combined with the integral plume model for comparison. These results show that the velocity and concentration distributions are both better predicted by the two-layer model than the notional nozzle models to complement previous studies verifying only the predicted concentration profiles. Thus, this study shows that the two-layer model can accurately predict the jet velocity distributions as well as the concentration distributions as verified earlier. Though more validation studies are needed to improve confidence in the model and increase the range of validity, the present work indicates that the two-layer model is a promising tool for fast, accurate predictions of the flow fields of underexpanded hydrogen jets. •The two-layer model has been validated using concentration and velocity data.•The two-layer model gave better predictions than notional nozzle models.•CFD modeling was significantly simplified by using the two-layer model.
Author Chowdhury, Bikram Roy
Christopher, David M.
Hecht, Ethan S.
Li, Xuefang
He, Qian
Author_xml – sequence: 1
  givenname: Xuefang
  orcidid: 0000-0003-1846-5626
  surname: Li
  fullname: Li, Xuefang
  organization: Institute of Thermal Science and Technology, Shandong University, Jinan 250061, China
– sequence: 2
  givenname: Bikram Roy
  orcidid: 0000-0002-3623-3477
  surname: Chowdhury
  fullname: Chowdhury, Bikram Roy
  organization: Combustion Research Facility, Sandia National Laboratories, Livermore, CA 94550, USA
– sequence: 3
  givenname: Qian
  surname: He
  fullname: He, Qian
  organization: Institute of Thermal Science and Technology, Shandong University, Jinan 250061, China
– sequence: 4
  givenname: David M.
  surname: Christopher
  fullname: Christopher, David M.
  email: dmc@tsinghua.edu.cn
  organization: Key Laboratory of Thermal Science and Power Engineering of Ministry of Education, Tsinghua University, Beijing 100084, China
– sequence: 5
  givenname: Ethan S.
  surname: Hecht
  fullname: Hecht, Ethan S.
  email: ehecht@sandia.gov
  organization: Combustion Research Facility, Sandia National Laboratories, Livermore, CA 94550, USA
BookMark eNqFkMtKAzEUhoNUsK2-gswLzHgySTOZhaAUrULBjboNaXKiGaaTkoyXvr0p1bWrb_Vf-GZkMoQBCbmkUFGg4qqrfPe-tzhgVUMNFchMfkKmVDZtybhsJmQKTEDJaNuekVlKHQBtgLdTcv2qe2_16MNQBFeMX6Hs9R5jsQ0W-8KFWHwMFiN-73SmLfJSDG84FB2O6ZycOt0nvPjlnLzc3z0vH8r10-pxebsuTZ4dS9QcaiFoUzPKQTq3kSZ_EQuDDplx0iKVouHQyEbKxUYgopFa2wVjdiMomxNx7DUxpBTRqV30Wx33ioI6SFCd-pOgDhIUyEyegzfHIOZ3nx6jSsbjYND6iGZUNvj_Kn4AfYVrcQ
CitedBy_id crossref_primary_10_1016_j_ijhydene_2023_07_092
crossref_primary_10_1016_j_rser_2021_111390
crossref_primary_10_1016_j_egyr_2022_04_067
crossref_primary_10_1016_j_energy_2024_131027
crossref_primary_10_1016_j_ijhydene_2023_05_157
crossref_primary_10_1016_j_ijhydene_2023_03_440
crossref_primary_10_1016_j_ijhydene_2023_11_281
crossref_primary_10_1002_ese3_1132
crossref_primary_10_1016_j_ijhydene_2023_04_209
crossref_primary_10_1016_j_ijhydene_2023_09_282
crossref_primary_10_1016_j_fuel_2023_128132
crossref_primary_10_1016_j_psep_2023_07_048
crossref_primary_10_1016_j_psep_2022_12_094
crossref_primary_10_1016_j_est_2024_110764
crossref_primary_10_1016_j_psep_2023_05_021
crossref_primary_10_1016_j_ijhydene_2022_01_082
crossref_primary_10_1016_j_ijhydene_2022_12_052
crossref_primary_10_1016_j_ijhydene_2024_06_099
crossref_primary_10_1016_j_ijhydene_2022_07_019
crossref_primary_10_1016_j_ijhydene_2022_08_110
crossref_primary_10_1016_j_ijhydene_2021_10_235
Cites_doi 10.1016/j.ijhydene.2012.03.063
10.1016/j.ijhydene.2010.03.075
10.1016/j.ijhydene.2013.01.052
10.1016/j.ijhydene.2008.05.041
10.1080/00102208408923739
10.1016/j.ijhydene.2015.10.071
10.1016/j.ijhydene.2016.07.002
10.1016/j.ijhydene.2018.05.036
10.1016/j.coche.2014.04.004
10.1080/00102208708952575
10.1063/1.1513796
10.1016/j.ijhydene.2019.02.208
10.1016/j.ijhydene.2006.08.037
10.1016/j.ijhydene.2016.05.214
10.1016/j.ijhydene.2012.08.106
10.1016/j.ijhydene.2018.03.089
ContentType Journal Article
Copyright 2020 Hydrogen Energy Publications LLC
Copyright_xml – notice: 2020 Hydrogen Energy Publications LLC
DBID AAYXX
CITATION
DOI 10.1016/j.ijhydene.2020.08.204
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-3487
EndPage 12554
ExternalDocumentID 10_1016_j_ijhydene_2020_08_204
S0360319920332316
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AARLI
AAXUO
ABFNM
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADECG
ADEZE
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AIEXJ
AIKHN
AITUG
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
HZ~
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCC
SDF
SDG
SES
SPC
SPCBC
SSK
SSM
SSR
SSZ
T5K
TN5
XPP
ZMT
~G-
29J
AAQXK
AAXKI
AAYXX
ABXDB
ACNNM
ADMUD
AFJKZ
AKRWK
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FGOYB
G-2
HVGLF
R2-
RIG
SAC
SCB
SEW
T9H
WUQ
ID FETCH-LOGICAL-c360t-ea4026617231408ffb8c31965cefe3cf8de186740787885b6eeec8aad533db613
IEDL.DBID AIKHN
ISSN 0360-3199
IngestDate Thu Sep 26 15:54:41 EDT 2024
Fri Feb 23 02:47:55 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 23
Keywords Underexpanded jets
Hydrogen safety
Two-layer model
PIV
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c360t-ea4026617231408ffb8c31965cefe3cf8de186740787885b6eeec8aad533db613
ORCID 0000-0002-3623-3477
0000-0003-1846-5626
OpenAccessLink https://www.sciencedirect.com/science/article/am/pii/S0360319920332316
PageCount 10
ParticipantIDs crossref_primary_10_1016_j_ijhydene_2020_08_204
elsevier_sciencedirect_doi_10_1016_j_ijhydene_2020_08_204
PublicationCentury 2000
PublicationDate 2021-03-31
PublicationDateYYYYMMDD 2021-03-31
PublicationDate_xml – month: 03
  year: 2021
  text: 2021-03-31
  day: 31
PublicationDecade 2020
PublicationTitle International journal of hydrogen energy
PublicationYear 2021
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Harstad, Bellan (bib7) 2006; 36
Groth, Hecht (bib17) 2017; 42
Li, Bai, Zhang, Song, Jiang, Grouset (bib3) 2019; 44
Molkov, Saffers (bib9) 2013; 38
Winters, Houf (bib14) 2011; 36
Hwang, Varma (bib2) 2014; 5
Houf, Winters (bib15) 2013; 38
Birch, Brown, Dodson, Swaffield (bib4) 1984; 36
Tang, Dzieminska, Asahara, Hayashi, Tsuboi (bib11) 2018; 43
Hu, Christopher, Li (bib12) 2018; 43
Malmström, Kirkpatrick, Christensen, Knappmiller (bib22) 1997; 52
Schefer, Houf, Williams (bib23) 2008; 33
Yüceil, Ötügen (bib6) 2002; 14
Ruggles, Ekoto (bib13) 2012; 37
Groth, Hecht, Reynolds (bib18) 2017
Molkov, Makarov, Bragin (bib20) 2009
Birch, Hughes, Swaffield (bib5) 1987; 52
Li, Christopher, Hecht, Ekoto (bib10) 2017; 42
Gebhart, Hilder, Kelleher (bib16) 1984
Molkov (bib1) 2012
Li, Hecht, Christopher (bib19) 2016; 41
Schefer, Houf, Williams, Bourne, Colton (bib8) 2007; 32
Hecht, Li, Ekoto (bib21) 2015
Malmström (10.1016/j.ijhydene.2020.08.204_bib22) 1997; 52
Houf (10.1016/j.ijhydene.2020.08.204_bib15) 2013; 38
Hu (10.1016/j.ijhydene.2020.08.204_bib12) 2018; 43
Molkov (10.1016/j.ijhydene.2020.08.204_bib20) 2009
Groth (10.1016/j.ijhydene.2020.08.204_bib17) 2017; 42
Hecht (10.1016/j.ijhydene.2020.08.204_bib21) 2015
Ruggles (10.1016/j.ijhydene.2020.08.204_bib13) 2012; 37
Tang (10.1016/j.ijhydene.2020.08.204_bib11) 2018; 43
Schefer (10.1016/j.ijhydene.2020.08.204_bib8) 2007; 32
Molkov (10.1016/j.ijhydene.2020.08.204_bib9) 2013; 38
Birch (10.1016/j.ijhydene.2020.08.204_bib5) 1987; 52
Molkov (10.1016/j.ijhydene.2020.08.204_bib1) 2012
Li (10.1016/j.ijhydene.2020.08.204_bib10) 2017; 42
Hwang (10.1016/j.ijhydene.2020.08.204_bib2) 2014; 5
Schefer (10.1016/j.ijhydene.2020.08.204_bib23) 2008; 33
Li (10.1016/j.ijhydene.2020.08.204_bib19) 2016; 41
Li (10.1016/j.ijhydene.2020.08.204_bib3) 2019; 44
Harstad (10.1016/j.ijhydene.2020.08.204_bib7) 2006; 36
Birch (10.1016/j.ijhydene.2020.08.204_bib4) 1984; 36
Groth (10.1016/j.ijhydene.2020.08.204_bib18) 2017
Gebhart (10.1016/j.ijhydene.2020.08.204_bib16) 1984
Yüceil (10.1016/j.ijhydene.2020.08.204_bib6) 2002; 14
Winters (10.1016/j.ijhydene.2020.08.204_bib14) 2011; 36
References_xml – volume: 52
  start-page: 161
  year: 1987
  end-page: 171
  ident: bib5
  article-title: Velocity decay of high pressure jets
  publication-title: Combust Sci Technol
  contributor:
    fullname: Swaffield
– volume: 32
  start-page: 2081
  year: 2007
  end-page: 2093
  ident: bib8
  article-title: Characterization of high-pressure, underexpanded hydrogen-jet flames
  publication-title: Int J Hydrogen Energy
  contributor:
    fullname: Colton
– volume: 38
  start-page: 8092
  year: 2013
  end-page: 8099
  ident: bib15
  article-title: Simulation of high-pressure liquid hydrogen releases
  publication-title: Int J Hydrogen Energy
  contributor:
    fullname: Winters
– volume: 43
  start-page: 9094
  year: 2018
  end-page: 9109
  ident: bib11
  article-title: Numerical investigation of a high pressure hydrogen jet of 82 MPa with adaptive mesh refinement: concentration and velocity distributions
  publication-title: Int J Hydrogen Energy
  contributor:
    fullname: Tsuboi
– volume: 36
  start-page: 2545
  year: 2006
  end-page: 2554
  ident: bib7
  article-title: Global analysis and parametric dependencies for potential unintended hydrogen-fuel releases
  publication-title: Combust Flame
  contributor:
    fullname: Bellan
– volume: 52
  start-page: 161
  year: 1997
  end-page: 171
  ident: bib22
  article-title: Centreline velocity decay measurements in low-velocity axisymmetric jets
  publication-title: J Fluid Mech
  contributor:
    fullname: Knappmiller
– volume: 43
  start-page: 13649
  year: 2018
  end-page: 13658
  ident: bib12
  article-title: Simplified partitioning model to simulate high pressure under-expanded jet flows impinging vertical obstacles
  publication-title: Int J Hydrogen Energy
  contributor:
    fullname: Li
– volume: 44
  start-page: 10677
  year: 2019
  end-page: 10693
  ident: bib3
  article-title: Review on the research of hydrogen storage system fast refueling in fuel cell vehicle
  publication-title: Int J Hydrogen Energy
  contributor:
    fullname: Grouset
– volume: 37
  start-page: 17549
  year: 2012
  end-page: 17560
  ident: bib13
  article-title: Ignitability and mixing of underexpanded hydrogen jets
  publication-title: Int J Hydrogen Energy
  contributor:
    fullname: Ekoto
– volume: 42
  start-page: 7457
  year: 2017
  end-page: 7466
  ident: bib10
  article-title: Comparison of two-layer model for hydrogen and helium jets with notional nozzle model predictions and experimental data for pressures up to 35 MPa
  publication-title: Int J Hydrogen Energy
  contributor:
    fullname: Ekoto
– volume: 41
  start-page: 1348
  year: 2016
  end-page: 1358
  ident: bib19
  article-title: Validation of a reduced-order jet model for subsonic and underexpanded hydrogen jets
  publication-title: Int J Hydrogen Energy
  contributor:
    fullname: Christopher
– year: 2015
  ident: bib21
  article-title: Validated equivalent source model for an underexpanded hydrogen jet
  publication-title: International conference on hydrogen safety, yokohama, Japan
  contributor:
    fullname: Ekoto
– year: 2009
  ident: bib20
  article-title: Physics and modelling of underexpanded jets and hydrogen dispersion in atmosphere
  publication-title: The 24th international conference on interaction of intense energy fluxes with matter
  contributor:
    fullname: Bragin
– volume: 14
  start-page: 4206
  year: 2002
  ident: bib6
  article-title: Scaling parameters for underexpanded supersonic jets
  publication-title: Phys Fluids
  contributor:
    fullname: Ötügen
– start-page: 1
  year: 1984
  end-page: 57
  ident: bib16
  article-title: The diffusion of turbulent buoyant jets
  publication-title: Adv Heat Tran
  contributor:
    fullname: Kelleher
– volume: 42
  start-page: 7485
  year: 2017
  end-page: 7493
  ident: bib17
  article-title: HyRAM: a methodology and toolkit for quantitative risk assessment of hydrogen systems
  publication-title: Int J Hydrogen Energy
  contributor:
    fullname: Hecht
– volume: 36
  start-page: 3913
  year: 2011
  end-page: 3921
  ident: bib14
  article-title: Simulation of small-scale releases from liquid hydrogen storage systems
  publication-title: Int J Hydrogen Energy
  contributor:
    fullname: Houf
– volume: 36
  start-page: 249
  year: 1984
  end-page: 261
  ident: bib4
  article-title: The structure and concentration decay of high pressure jets of natural gas
  publication-title: Combust Sci Technol
  contributor:
    fullname: Swaffield
– volume: 33
  start-page: 6373
  year: 2008
  end-page: 6384
  ident: bib23
  article-title: Investigation of small-scale unintended releases of hydrogen: momentum-dominated regime
  publication-title: Int J Hydrogen Energy
  contributor:
    fullname: Williams
– year: 2017
  ident: bib18
  article-title: Methodology for assessing the safety of hydrogen systems: HyRAM 1.1 technical reference manual
  contributor:
    fullname: Reynolds
– year: 2012
  ident: bib1
  article-title: Fundamentals of hydrogen safety engineering
  contributor:
    fullname: Molkov
– volume: 38
  start-page: 8141
  year: 2013
  end-page: 8158
  ident: bib9
  article-title: Hydrogen jet flames
  publication-title: Int J Hydrogen Energy
  contributor:
    fullname: Saffers
– volume: 5
  start-page: 42
  year: 2014
  end-page: 48
  ident: bib2
  article-title: Hydrogen storage for fuel cell vehicles
  publication-title: Curr Opin Chem Eng
  contributor:
    fullname: Varma
– volume: 37
  start-page: 17549
  year: 2012
  ident: 10.1016/j.ijhydene.2020.08.204_bib13
  article-title: Ignitability and mixing of underexpanded hydrogen jets
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2012.03.063
  contributor:
    fullname: Ruggles
– volume: 36
  start-page: 3913
  year: 2011
  ident: 10.1016/j.ijhydene.2020.08.204_bib14
  article-title: Simulation of small-scale releases from liquid hydrogen storage systems
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2010.03.075
  contributor:
    fullname: Winters
– year: 2009
  ident: 10.1016/j.ijhydene.2020.08.204_bib20
  article-title: Physics and modelling of underexpanded jets and hydrogen dispersion in atmosphere
  contributor:
    fullname: Molkov
– volume: 38
  start-page: 8092
  year: 2013
  ident: 10.1016/j.ijhydene.2020.08.204_bib15
  article-title: Simulation of high-pressure liquid hydrogen releases
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2013.01.052
  contributor:
    fullname: Houf
– volume: 33
  start-page: 6373
  year: 2008
  ident: 10.1016/j.ijhydene.2020.08.204_bib23
  article-title: Investigation of small-scale unintended releases of hydrogen: momentum-dominated regime
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2008.05.041
  contributor:
    fullname: Schefer
– year: 2017
  ident: 10.1016/j.ijhydene.2020.08.204_bib18
  contributor:
    fullname: Groth
– volume: 36
  start-page: 249
  year: 1984
  ident: 10.1016/j.ijhydene.2020.08.204_bib4
  article-title: The structure and concentration decay of high pressure jets of natural gas
  publication-title: Combust Sci Technol
  doi: 10.1080/00102208408923739
  contributor:
    fullname: Birch
– volume: 41
  start-page: 1348
  year: 2016
  ident: 10.1016/j.ijhydene.2020.08.204_bib19
  article-title: Validation of a reduced-order jet model for subsonic and underexpanded hydrogen jets
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2015.10.071
  contributor:
    fullname: Li
– volume: 42
  start-page: 7485
  year: 2017
  ident: 10.1016/j.ijhydene.2020.08.204_bib17
  article-title: HyRAM: a methodology and toolkit for quantitative risk assessment of hydrogen systems
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2016.07.002
  contributor:
    fullname: Groth
– year: 2015
  ident: 10.1016/j.ijhydene.2020.08.204_bib21
  article-title: Validated equivalent source model for an underexpanded hydrogen jet
  contributor:
    fullname: Hecht
– volume: 36
  start-page: 2545
  year: 2006
  ident: 10.1016/j.ijhydene.2020.08.204_bib7
  article-title: Global analysis and parametric dependencies for potential unintended hydrogen-fuel releases
  publication-title: Combust Flame
  contributor:
    fullname: Harstad
– volume: 43
  start-page: 13649
  year: 2018
  ident: 10.1016/j.ijhydene.2020.08.204_bib12
  article-title: Simplified partitioning model to simulate high pressure under-expanded jet flows impinging vertical obstacles
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2018.05.036
  contributor:
    fullname: Hu
– volume: 5
  start-page: 42
  year: 2014
  ident: 10.1016/j.ijhydene.2020.08.204_bib2
  article-title: Hydrogen storage for fuel cell vehicles
  publication-title: Curr Opin Chem Eng
  doi: 10.1016/j.coche.2014.04.004
  contributor:
    fullname: Hwang
– year: 2012
  ident: 10.1016/j.ijhydene.2020.08.204_bib1
  contributor:
    fullname: Molkov
– volume: 52
  start-page: 161
  year: 1987
  ident: 10.1016/j.ijhydene.2020.08.204_bib5
  article-title: Velocity decay of high pressure jets
  publication-title: Combust Sci Technol
  doi: 10.1080/00102208708952575
  contributor:
    fullname: Birch
– volume: 14
  start-page: 4206
  year: 2002
  ident: 10.1016/j.ijhydene.2020.08.204_bib6
  article-title: Scaling parameters for underexpanded supersonic jets
  publication-title: Phys Fluids
  doi: 10.1063/1.1513796
  contributor:
    fullname: Yüceil
– volume: 44
  start-page: 10677
  year: 2019
  ident: 10.1016/j.ijhydene.2020.08.204_bib3
  article-title: Review on the research of hydrogen storage system fast refueling in fuel cell vehicle
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2019.02.208
  contributor:
    fullname: Li
– volume: 32
  start-page: 2081
  year: 2007
  ident: 10.1016/j.ijhydene.2020.08.204_bib8
  article-title: Characterization of high-pressure, underexpanded hydrogen-jet flames
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2006.08.037
  contributor:
    fullname: Schefer
– start-page: 1
  year: 1984
  ident: 10.1016/j.ijhydene.2020.08.204_bib16
  article-title: The diffusion of turbulent buoyant jets
  publication-title: Adv Heat Tran
  contributor:
    fullname: Gebhart
– volume: 42
  start-page: 7457
  year: 2017
  ident: 10.1016/j.ijhydene.2020.08.204_bib10
  article-title: Comparison of two-layer model for hydrogen and helium jets with notional nozzle model predictions and experimental data for pressures up to 35 MPa
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2016.05.214
  contributor:
    fullname: Li
– volume: 38
  start-page: 8141
  year: 2013
  ident: 10.1016/j.ijhydene.2020.08.204_bib9
  article-title: Hydrogen jet flames
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2012.08.106
  contributor:
    fullname: Molkov
– volume: 43
  start-page: 9094
  year: 2018
  ident: 10.1016/j.ijhydene.2020.08.204_bib11
  article-title: Numerical investigation of a high pressure hydrogen jet of 82 MPa with adaptive mesh refinement: concentration and velocity distributions
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2018.03.089
  contributor:
    fullname: Tang
– volume: 52
  start-page: 161
  year: 1997
  ident: 10.1016/j.ijhydene.2020.08.204_bib22
  article-title: Centreline velocity decay measurements in low-velocity axisymmetric jets
  publication-title: J Fluid Mech
  contributor:
    fullname: Malmström
SSID ssj0017049
Score 2.4933565
Snippet Previous studies have shown that the two-layer model more accurately predicts hydrogen dispersion than the conventional notional nozzle models without...
SourceID crossref
elsevier
SourceType Aggregation Database
Publisher
StartPage 12545
SubjectTerms Hydrogen safety
PIV
Two-layer model
Underexpanded jets
Title Validation of two-layer model for underexpanded hydrogen jets
URI https://dx.doi.org/10.1016/j.ijhydene.2020.08.204
Volume 46
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED71scCAeIrykgdWNyHvDAxVRVVAdIGiblFin0Uj1FQlCFj47ZwTBxUxMDBFinKKc7HvvrPvvgM498kqhtIPOaKP3POymKdeKLj0AlQyltKt6BjuJsF46t3M_FkLhk0tjE6rNLa_tumVtTZ3LKNNazmfW_f0Fl2CEzu26xJKCdrQJXfkRB3oDq5vx5Pvw4TQoGB6nmuBtULhvD_Pnz5ohWvGTMfWbJ6O6dn2y0et-Z3RNmwZwMgG9Zh2oIWLXdhcoxHcg8tHAtN1byRWKFa-Ffw5JSjNqjY3jGAp06ViK3xf6i1jyWgsq4JmDsuxfNmH6ejqYTjmpi0CF_QFJceUYr5AIw-XoqNIqSwSeiH5AhW6QkUSNUudPqCj-NbPAkQUUZpKQnYyI_d9AJ1FscBDYBT-ZoFNGE9QoOfEKhZKOFEqXLR94TqiB1ajiGRZs18kTVpYnjSqS7TqEjuiq9eDuNFX8uM_JmSi_5A9-ofsMWw4OtukqhY8gU65esVTggtldgbt_ufFmZkUX9DDv9U
link.rule.ids 315,783,787,4509,24128,27936,27937,45597,45691
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZKOwAD4inK0wOrSZR3BoaqokrpY6FF3azEPotGqK1KEPDvOScOKmJgYIoU5RTn4rv7zvZ9R8iNj14xlH7IAHxgnpfFLPVCwaQXgJKxlG5JxzAaB8nUe5j5swbp1rUw-lil8f2VTy-9tbljGW1aq_ncesS36BKc2LFdF1FKsEVaiAZitM5Wpz9Ixt-bCaFBwfg80wIbhcL57Tx__kQL14yZjq3ZPB3Ts-1XjNqIO719smcAI-1UYzogDVgckt0NGsEjcveEYLrqjUSXihbvS_aSIpSmZZsbirCU6lKxNXys9JKxpDiW9RJnDs2heD0m0979pJsw0xaBCfyCgkGKOV-gkYeL2VGkVBYJbUi-AAWuUJEEzVKnN-gwv_WzAABElKYSkZ3MMHyfkOZiuYBTQjH9zQIbMZ7ARM-JVSyUcKJUuGD7wnVEm1i1IviqYr_g9bGwnNeq41p13I7w6rVJXOuL__iPHF30H7Jn_5C9JtvJZDTkw_54cE52HH3ypKwcvCDNYv0GlwgdiuzKTI0vekvByQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Validation+of+two-layer+model+for+underexpanded+hydrogen+jets&rft.jtitle=International+journal+of+hydrogen+energy&rft.au=Li%2C+Xuefang&rft.au=Chowdhury%2C+Bikram+Roy&rft.au=He%2C+Qian&rft.au=Christopher%2C+David+M.&rft.date=2021-03-31&rft.pub=Elsevier+Ltd&rft.issn=0360-3199&rft.eissn=1879-3487&rft.volume=46&rft.issue=23&rft.spage=12545&rft.epage=12554&rft_id=info:doi/10.1016%2Fj.ijhydene.2020.08.204&rft.externalDocID=S0360319920332316
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-3199&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-3199&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-3199&client=summon