Detection and Classification of Early Decay on Blueberry Based on Improved Deep Residual 3D Convolutional Neural Network in Hyperspectral Images

Recently, the automatic detection of decayed blueberries is still a challenge in food industry. Early decay of blueberries happens on surface peel, which may adopt the feasibility of hyperspectral imaging mode to detect decayed region of blueberries. An improved deep residual 3D convolutional neural...

Full description

Saved in:
Bibliographic Details
Published inScientific programming Vol. 2020; no. 2020; pp. 1 - 12
Main Authors Pei, Zhili, Zhang, Jun, Wang, Qinghu, Qiao, Shicheng
Format Journal Article
LanguageEnglish
Published Cairo, Egypt Hindawi Publishing Corporation 2020
Hindawi
John Wiley & Sons, Inc
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Recently, the automatic detection of decayed blueberries is still a challenge in food industry. Early decay of blueberries happens on surface peel, which may adopt the feasibility of hyperspectral imaging mode to detect decayed region of blueberries. An improved deep residual 3D convolutional neural network (3D-CNN) framework is proposed for hyperspectral images classification so as to realize fast training, classification, and parameter optimization. Rich spectral and spatial features can be rapidly extracted from samples of complete hyperspectral images using our proposed network. This combines the tree structured Parzen estimator (TPE) adaptively and selects the super parameters to optimize the network performance. In addition, aiming at the problem of few samples, this paper proposes a novel strategy to enhance the hyperspectral image sample data, which can improve the training effect. Experimental results on the standard hyperspectral blueberry datasets show that the proposed framework improves the classification accuracy compared with AlexNet and GoogleNet. In addition, our proposed network reduces the number of parameters by half and the training time by about 10%.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1058-9244
1875-919X
DOI:10.1155/2020/8895875