Methods for biomaterials printing: A short review and perspective
Printing technologies have opened larger windows of innovation and creativity to biomaterials engineers by providing them with the ability to fabricate complex shapes in a reasonable time, cost, and weight. However, there has always been a trouble with function adjusting in printing technologies in...
Saved in:
Published in | Methods (San Diego, Calif.) Vol. 206; pp. 1 - 7 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
01.10.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Printing technologies have opened larger windows of innovation and creativity to biomaterials engineers by providing them with the ability to fabricate complex shapes in a reasonable time, cost, and weight. However, there has always been a trouble with function adjusting in printing technologies in view of the multiplicity of materials and apparatus parameters. 3D printing, also known as additive manufacturing, revolutionized biomaterials engineering by the conversion of a digital subject into a printed object (implants, scaffolds, or diagnostics and drug delivery devices/systems).Inspired by the lessons learned from 3D printing, the concept of 4D printing (better called shape-morphing fabrication) was conceptualized and put into practice to reply on the need for responsiveness of the printed platforms to a stimulus (light, pH, temperature, voltage, humidity, etc.) in a programmable manner. Later, the next milestone in printing technology was reached by 5D printing, by which the desired objects could be printed from five axes compared to the upward one-point printing by 3D printers. 5D printers use ≈20-30% fewer materials comparatively, enabling the printing of curved surfaces. Nevertheless, all bioprinters need a bio-ink with qualified characteristics for the biomedical applications. Thus, we discussed briefly the cell viability, scaffold biomimicry, scaffold biodegradation and affordability.Printing technologies have opened larger windows of innovation and creativity to biomaterials engineers by providing them with the ability to fabricate complex shapes in a reasonable time, cost, and weight. However, there has always been a trouble with function adjusting in printing technologies in view of the multiplicity of materials and apparatus parameters. 3D printing, also known as additive manufacturing, revolutionized biomaterials engineering by the conversion of a digital subject into a printed object (implants, scaffolds, or diagnostics and drug delivery devices/systems).Inspired by the lessons learned from 3D printing, the concept of 4D printing (better called shape-morphing fabrication) was conceptualized and put into practice to reply on the need for responsiveness of the printed platforms to a stimulus (light, pH, temperature, voltage, humidity, etc.) in a programmable manner. Later, the next milestone in printing technology was reached by 5D printing, by which the desired objects could be printed from five axes compared to the upward one-point printing by 3D printers. 5D printers use ≈20-30% fewer materials comparatively, enabling the printing of curved surfaces. Nevertheless, all bioprinters need a bio-ink with qualified characteristics for the biomedical applications. Thus, we discussed briefly the cell viability, scaffold biomimicry, scaffold biodegradation and affordability. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1046-2023 1095-9130 1095-9130 |
DOI: | 10.1016/j.ymeth.2022.07.016 |