Preparation and Characterization of PEG-PLA Genistein Micelles Using a Modified Emulsion-Evaporation Method
The objective of this study is to improve the bioavailability of genistein by encapsulation with polyethylene glycol-polylactic acid (PEG-PLA) copolymers. Genistein micelles (GMs) prepared using a modified emulsion-evaporation method were more stable than those made with the original method. The eff...
Saved in:
Published in | Journal of nanomaterials Vol. 2020; no. 2020; pp. 1 - 15 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Cairo, Egypt
Hindawi Publishing Corporation
2020
Hindawi John Wiley & Sons, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The objective of this study is to improve the bioavailability of genistein by encapsulation with polyethylene glycol-polylactic acid (PEG-PLA) copolymers. Genistein micelles (GMs) prepared using a modified emulsion-evaporation method were more stable than those made with the original method. The effect of polyvinyl alcohol, Tween 80, sonication time, PEG-PLA/genistein ratio, and organic phase (acetone)/H2O ratio on the size, polydispersity index, encapsulation efficiency, and drug loading efficiency of GMs was investigated. GMs were obtained and characterized under optimal experimental conditions. For long-term storage, GMs were lyophilized by freeze drying with trehalose to produce genistein lyophilized powder (GLP). The analysis of GLP by Fourier-transform infrared spectroscopy and differential scanning calorimetry showed that genistein was successfully incorporated into the micellar structure. In vitro release experiments revealed that the incorporation of genistein into PEG-PLA copolymers significantly improved its solubility and bioavailability. GLP was more potent in inhibiting the proliferation of HSC-T6 cells than genistein. Treatment with GLP at 10–20 μg/mL for 48 h significantly inhibited the protein expression of α-smooth muscle actin and collagen I in HSC-T6 cells compared with the control. These data demonstrated that the improved solubility and bioavailability of genistein in the form of GLP enhanced its antifibrotic effect in vitro. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 1687-4110 1687-4129 |
DOI: | 10.1155/2020/3278098 |