The peptide transporter PEPT1 is expressed in distal colon in rodents and humans and contributes to water absorption
The peptide transporter PEPT1, expressed in the brush border membrane of enterocytes, mediates the uptake of di- and tripeptides from luminal protein digestion in the small intestine. PEPT1 was proposed not to be expressed in normal colonic mucosa but may become detectable in inflammatory states suc...
Saved in:
Published in | American journal of physiology: Gastrointestinal and liver physiology Vol. 305; no. 1; pp. G66 - G73 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Physiological Society
01.07.2013
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The peptide transporter PEPT1, expressed in the brush border membrane of enterocytes, mediates the uptake of di- and tripeptides from luminal protein digestion in the small intestine. PEPT1 was proposed not to be expressed in normal colonic mucosa but may become detectable in inflammatory states such as Crohn's disease or ulcerative colitis. We reassessed colonic expression of PEPT1 by performing a systematic analysis of PEPT1 mRNA and protein levels in healthy colonic tissues in mice, rats, and humans. Immunofluorescence analysis of different mouse strains (C57BL/6N, 129/Sv, BALB/c) demonstrated the presence of PEPT1 in the distal part of the colon but not in proximal colon. Rat and human intestines display a similar distribution of PEPT1 as found in mice. However, localization in human sigmoid colon revealed immunoreactivity present at low levels in apical membranes but substantial staining in distinct intracellular compartments. Functional activity of PEPT1 in colonic tissues from mice was assessed in everted sac preparations using [¹⁴C]Gly-Sar and found to be 5.7-fold higher in distal compared with proximal colon. In intestinal tissues from Pept1-/- mice, no [¹⁴C]Gly-Sar transport was detectable but feces samples revealed significantly higher water content than in wild-type mice, suggesting that PEPT1 contributes to colonic water absorption. In conclusion, our studies unequivocally demonstrate the presence of PEPT1 protein in healthy distal colonic epithelium in mice, rats, and humans and proved that the protein is functional and contributes to electrolyte and water handling in mice. |
---|---|
ISSN: | 0193-1857 1522-1547 |
DOI: | 10.1152/ajpgi.00491.2012 |