Study of Nonlinear Characteristics and Model Based Control for Proportional Electromagnet

The nonlinear characteristics of proportional electromagnet caused by hysteresis bring great difficulties on its accurate position tracking control by current. In order to enhance the practicability and reliability of long stroke electromagnet in case of position sensor fault and improve the positio...

Full description

Saved in:
Bibliographic Details
Published inMathematical problems in engineering Vol. 2018; no. 2018; pp. 1 - 11
Main Authors Ding, Shun-Liang, Ma, Zi-Kun, Yao, Chong, Zhao, Guo-Feng, Song, En-Zhe, Ma, Xiuzhen
Format Journal Article
LanguageEnglish
Published Cairo, Egypt Hindawi Publishing Corporation 01.01.2018
Hindawi
Hindawi Limited
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The nonlinear characteristics of proportional electromagnet caused by hysteresis bring great difficulties on its accurate position tracking control by current. In order to enhance the practicability and reliability of long stroke electromagnet in case of position sensor fault and improve the position tracking performance during current closed-loop control, experimental investigations on the electromagnet actuator hysteresis characteristics of diesel engine governor are carried out to analyze the system dynamic features and the effects of hysteresis on actuator position tracking performance. It is clear that hysteresis can significantly hinder the accurate position control of the electromagnet actuator. Consequently, the fuel injection will be delayed, which will lead to hysteresis of engine speed control as well as deterioration of engine performance. In this paper, the hysteresis phenomenon of an actuator and its influence on control performance of engine are investigated. The model of proportional electromagnet actuator (PEA) is established and the hysteresis principle is analyzed. Then the inverse model control strategy based on neural network (NN) is proposed to linearize the transfer behavior of electromagnet and compensate for the magnet hysteresis. Rapid control prototyping (RCP) experiment based on MicroAutoBox is further implemented to validate the real-time performance of the proposed control strategy in D6114 diesel engine. The results show that the speed fluctuation (SF) under steady-state conditions (especially under idle speed condition) and the recovery time as well as the overshoot under transient conditions are significantly improved. This makes it possible to develop redundant electromagnet driving control strategy.
ISSN:1024-123X
1563-5147
DOI:10.1155/2018/2549456