Towards a Complete Set of Gym Exercises Detection Using Smartphone Sensors

Smartphones with gym exercises predictors can act as trainers for the gym-goers. However, various available solutions do not have the complete set of most practiced exercises. Therefore, in this research, a complete set of most practiced 26 exercises was identified from the literature. Among the exe...

Full description

Saved in:
Bibliographic Details
Published inScientific programming Vol. 2020; no. 2020; pp. 1 - 12
Main Authors Khan, Abdul Nasir, Khan, Muhammad Amir, Jadoon, Rab Nawaz, Jadoon, Waqas, Din, Ahmad, Khan, Iftikhar Ahmed, Khan, Usman Ali, Khan, Fiaz Gul
Format Journal Article
LanguageEnglish
Published Cairo, Egypt Hindawi Publishing Corporation 2020
Hindawi
John Wiley & Sons, Inc
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Smartphones with gym exercises predictors can act as trainers for the gym-goers. However, various available solutions do not have the complete set of most practiced exercises. Therefore, in this research, a complete set of most practiced 26 exercises was identified from the literature. Among the exercises, 14 were unique and 12 were common to the existing literature. Furthermore, finding suitable smartphone attachment position(s) and the number of sensors to predict exercises with the highest possible accuracy were also the objectives of the research. Besides, this study considered the most number of participants (20) as compared to the existing literature (maximum 10). The results indicate three key lessons: (a) the most suitable classifier to predict a class (exercise) from the sensor-based data was found to be KNN (K-nearest neighbors); (b) the sensors placed at the three positions (arm, belly, and leg) could be more accurate than other positions for the gym exercises; and (c) accelerometer and gyroscope when combined can provide accurate classification up to 99.72% (using KNN as classifier at all 3 positions).
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1058-9244
1875-919X
DOI:10.1155/2020/6471438