Hydrogen-powered aircraft: Fundamental concepts, key technologies, and environmental impacts

Civil aviation provides an essential transportation network that connects the world and supports global economic growth. To maintain these benefits while meeting environmental goals, next-generation aircraft must have drastically reduced climate impacts. Hydrogen-powered aircraft have the potential...

Full description

Saved in:
Bibliographic Details
Published inProgress in aerospace sciences Vol. 141; p. 100922
Main Authors Adler, Eytan J., Martins, Joaquim R.R.A.
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.08.2023
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Civil aviation provides an essential transportation network that connects the world and supports global economic growth. To maintain these benefits while meeting environmental goals, next-generation aircraft must have drastically reduced climate impacts. Hydrogen-powered aircraft have the potential to fly existing routes with no carbon emissions and reduce or eliminate other emissions. This paper is a comprehensive guide to hydrogen-powered aircraft that explains the fundamental physics and reviews current technologies. We discuss the impact of these technologies on aircraft design, cost, certification, and environment. In the long term, hydrogen aircraft appear to be the most compelling alternative to today’s kerosene-powered aircraft. Using hydrogen also enables novel technologies, such as fuel cells and superconducting electronics, which could lead to aircraft concepts that are not feasible with kerosene. Hydrogen-powered aircraft are technologically feasible but require significant research and development. Lightweight liquid hydrogen tanks and their integration with the airframe is one of the critical technologies. Fuel cells can eliminate in-flight emissions but must become lighter, more powerful, and more durable to make large, fuel cell-powered transport aircraft feasible. Hydrogen turbofans already have these desirable characteristics but produce some emissions, albeit much less damaging than kerosene turbofans. Beyond airframe and propulsion technologies, the viability of hydrogen aircraft hinges on low-cost green hydrogen production, which requires massive investments in the energy infrastructure.
ISSN:0376-0421
1873-1724
DOI:10.1016/j.paerosci.2023.100922