ON THE DIVISOR FUNCTION OVER NONHOMOGENEOUS BEATTY SEQUENCES
We consider sums involving the divisor function over nonhomogeneous ( $\beta \neq 0$ ) Beatty sequences $ \mathcal {B}_{\alpha ,\beta }:=\{[\alpha n+\beta ]\}_{n=1}^{\infty } $ and show that $$ \begin{align*} \sum_{n\leq N,\ n\in\mathcal{B}_{\alpha,\beta}}d(n) =\alpha^{-1}\sum_{m\leq N}d(m) +O(N^{1-...
Saved in:
Published in | Bulletin of the Australian Mathematical Society Vol. 106; no. 2; pp. 280 - 287 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Cambridge, UK
Cambridge University Press
01.10.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Be the first to leave a comment!