ON THE DIVISOR FUNCTION OVER NONHOMOGENEOUS BEATTY SEQUENCES
We consider sums involving the divisor function over nonhomogeneous ( $\beta \neq 0$ ) Beatty sequences $ \mathcal {B}_{\alpha ,\beta }:=\{[\alpha n+\beta ]\}_{n=1}^{\infty } $ and show that $$ \begin{align*} \sum_{n\leq N,\ n\in\mathcal{B}_{\alpha,\beta}}d(n) =\alpha^{-1}\sum_{m\leq N}d(m) +O(N^{1-...
Saved in:
Published in | Bulletin of the Australian Mathematical Society Vol. 106; no. 2; pp. 280 - 287 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Cambridge, UK
Cambridge University Press
01.10.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | We consider sums involving the divisor function over nonhomogeneous (
$\beta \neq 0$
) Beatty sequences
$ \mathcal {B}_{\alpha ,\beta }:=\{[\alpha n+\beta ]\}_{n=1}^{\infty } $
and show that
$$ \begin{align*} \sum_{n\leq N,\ n\in\mathcal{B}_{\alpha,\beta}}d(n) =\alpha^{-1}\sum_{m\leq N}d(m) +O(N^{1-1/(\tau+1)+\varepsilon}), \end{align*} $$
where N is a sufficiently large integer,
$\alpha $
is of finite type
$\tau $
and
$\beta \neq 0$
. Previously, such estimates were only obtained for homogeneous Beatty sequences or for almost all
$\alpha $
. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 0004-9727 1755-1633 |
DOI: | 10.1017/S0004972722000181 |