ON THE DIVISOR FUNCTION OVER NONHOMOGENEOUS BEATTY SEQUENCES

We consider sums involving the divisor function over nonhomogeneous ( $\beta \neq 0$ ) Beatty sequences $ \mathcal {B}_{\alpha ,\beta }:=\{[\alpha n+\beta ]\}_{n=1}^{\infty } $ and show that $$ \begin{align*} \sum_{n\leq N,\ n\in\mathcal{B}_{\alpha,\beta}}d(n) =\alpha^{-1}\sum_{m\leq N}d(m) +O(N^{1-...

Full description

Saved in:
Bibliographic Details
Published inBulletin of the Australian Mathematical Society Vol. 106; no. 2; pp. 280 - 287
Main Author ZHANG, WEI
Format Journal Article
LanguageEnglish
Published Cambridge, UK Cambridge University Press 01.10.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We consider sums involving the divisor function over nonhomogeneous ( $\beta \neq 0$ ) Beatty sequences $ \mathcal {B}_{\alpha ,\beta }:=\{[\alpha n+\beta ]\}_{n=1}^{\infty } $ and show that $$ \begin{align*} \sum_{n\leq N,\ n\in\mathcal{B}_{\alpha,\beta}}d(n) =\alpha^{-1}\sum_{m\leq N}d(m) +O(N^{1-1/(\tau+1)+\varepsilon}), \end{align*} $$ where N is a sufficiently large integer, $\alpha $ is of finite type $\tau $ and $\beta \neq 0$ . Previously, such estimates were only obtained for homogeneous Beatty sequences or for almost all $\alpha $ .
AbstractList We consider sums involving the divisor function over nonhomogeneous ( $\beta \neq 0$ ) Beatty sequences $ \mathcal {B}_{\alpha ,\beta }:=\{[\alpha n+\beta ]\}_{n=1}^{\infty } $ and show that $$ \begin{align*} \sum_{n\leq N,\ n\in\mathcal{B}_{\alpha,\beta}}d(n) =\alpha^{-1}\sum_{m\leq N}d(m) +O(N^{1-1/(\tau+1)+\varepsilon}), \end{align*} $$ where N is a sufficiently large integer, $\alpha $ is of finite type $\tau $ and $\beta \neq 0$ . Previously, such estimates were only obtained for homogeneous Beatty sequences or for almost all $\alpha $ .
We consider sums involving the divisor function over nonhomogeneous ( $\beta \neq 0$ ) Beatty sequences $ \mathcal {B}_{\alpha ,\beta }:=\{[\alpha n+\beta ]\}_{n=1}^{\infty } $ and show that $$ \begin{align*} \sum_{n\leq N,\ n\in\mathcal{B}_{\alpha,\beta}}d(n) =\alpha^{-1}\sum_{m\leq N}d(m) +O(N^{1-1/(\tau+1)+\varepsilon}), \end{align*} $$ where N is a sufficiently large integer, $\alpha $ is of finite type $\tau $ and $\beta \neq 0$ . Previously, such estimates were only obtained for homogeneous Beatty sequences or for almost all $\alpha $ .
We consider sums involving the divisor function over nonhomogeneous ($\beta \neq 0$) Beatty sequences $ \mathcal {B}_{\alpha ,\beta }:=\{[\alpha n+\beta ]\}_{n=1}^{\infty } $ and show that $$ \begin{align*} \sum_{n\leq N,\ n\in\mathcal{B}_{\alpha,\beta}}d(n) =\alpha^{-1}\sum_{m\leq N}d(m) +O(N^{1-1/(\tau+1)+\varepsilon}), \end{align*} $$where N is a sufficiently large integer, $\alpha $ is of finite type $\tau $ and $\beta \neq 0$. Previously, such estimates were only obtained for homogeneous Beatty sequences or for almost all $\alpha $.
Author ZHANG, WEI
Author_xml – sequence: 1
  givenname: WEI
  orcidid: 0000-0002-5505-2671
  surname: ZHANG
  fullname: ZHANG, WEI
  email: zhangweimath@126.com
  organization: School of Mathematics and Statistics, Henan University, Kaifeng 475004, Henan, PR China
BookMark eNp9kE1Pg0AQhjemJrbVH-CNxDO6swssJF4qbgtJZWOBJp4IC4uhaaEu9OC_l6ZNTDR6mq_3mZm8EzRq2kYhdAv4HjCwhxhjbHmMMEKGDFy4QGNgtm2CQ-kIjY9j8zi_QpOu2wyVbRN3jB5FZCQBN57DdRiLlTFPIz8Jh6ZY85URiSgQL2LBIy7S2HjisyR5M2L-mvLI5_E1uqzybaduznGK0jlP_MBcikXoz5ZmQR3cmw7ziPQ8xlwqC8silEmQSlLLrrxSMSDUqaQC4koAWcqyALeiBZOOZNbwfUmn6O60d6_bj4Pq-mzTHnQznMwIsx3Hdi3iDSp2UhW67Tqtqqyo-7yv26bXeb3NAGdHq7JfVg0k_CD3ut7l-vNfhp6ZfCd1Xb6r76f-pr4A-pV0sA
CitedBy_id crossref_primary_10_1007_s11139_025_01029_2
crossref_primary_10_1007_s40590_022_00482_z
Cites_doi 10.4064/aa200128-10-6
10.4064/aa-70-3-195-207
10.1112/S0025579300000644
10.1007/BF01174369
10.1112/S0025579300009025
10.4064/aa136-1-6
10.4310/MRL.2006.v13.n4.a4
10.1007/BF01216806
ContentType Journal Article
Copyright The Author(s), 2022. Published by Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc.
Copyright_xml – notice: The Author(s), 2022. Published by Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc.
DBID AAYXX
CITATION
3V.
7XB
88I
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
L6V
M2P
M7S
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOI 10.1017/S0004972722000181
DatabaseName CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Engineering Collection
Science Database
Engineering Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList CrossRef

ProQuest Central Student
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1755-1633
EndPage 287
ExternalDocumentID 10_1017_S0004972722000181
GroupedDBID --Z
-1D
-1F
-2P
-2V
-E.
-~6
-~N
-~X
.FH
09C
09E
0E1
0R~
23N
2WC
4.4
5GY
5VS
6J9
6TJ
6~7
74X
74Y
7~V
88I
9M5
AAAZR
AABES
AABWE
AACJH
AAEED
AAGFV
AAKTX
AAMNQ
AANRG
AARAB
AASVR
AAUIS
AAUKB
ABBXD
ABBZL
ABGDZ
ABITZ
ABJCF
ABJNI
ABKKG
ABMWE
ABMYL
ABQTM
ABROB
ABTAH
ABUWG
ABVFV
ABXAU
ABZCX
ABZUI
ACBMC
ACCHT
ACETC
ACGFO
ACGFS
ACIMK
ACMRT
ACQFJ
ACREK
ACUIJ
ACUYZ
ACWGA
ACYZP
ACZBM
ACZUX
ACZWT
ADCGK
ADDNB
ADFEC
ADGEJ
ADKIL
ADOCW
ADOVH
ADOVT
ADVJH
AEBAK
AEBPU
AEGXH
AEHGV
AEMTW
AENCP
AENEX
AENGE
AEYYC
AFFNX
AFFUJ
AFKQG
AFKRA
AFLOS
AFLVW
AFUTZ
AGABE
AGBYD
AGJUD
AGLWM
AGOOT
AHQXX
AHRGI
AI.
AIAGR
AIGNW
AIHIV
AIOIP
AISIE
AJ7
AJCYY
AJPFC
AJQAS
AKZCZ
ALMA_UNASSIGNED_HOLDINGS
ALWZO
AQJOH
ARABE
ARZZG
ATUCA
AUXHV
AYIQA
AZQEC
BBLKV
BCGOX
BENPR
BESQT
BGHMG
BGLVJ
BJBOZ
BLZWO
BMAJL
BQFHP
C0O
CAG
CBIIA
CCPQU
CCQAD
CCUQV
CDIZJ
CFAFE
CFBFF
CGQII
CHEAL
CJCSC
COF
CS3
DC4
DOHLZ
DU5
DWQXO
EBS
EGQIC
EJD
ESX
GNUQQ
HCIFZ
HG-
HST
HZ~
H~9
I.6
I.7
I.9
IH6
IOEEP
IOO
IS6
I~P
J36
J38
J3A
JHPGK
JQKCU
KAFGG
KC5
KCGVB
KFECR
KWQ
L98
LHUNA
LW7
M-V
M2P
M7S
M7~
M8.
NIKVX
NMFBF
NZEOI
O9-
OHT
OK1
P2P
PTHSS
PYCCK
RAMDC
RCA
ROL
RR0
S10
S6-
S6U
SAAAG
T9M
TN5
TWZ
UPT
UT1
VH1
WFFJZ
WQ3
WXU
WXY
WYP
ZCG
ZDLDU
ZJOSE
ZMEZD
ZY4
ZYDXJ
~V1
AAKNA
AATMM
AAYXX
ABHFL
ABVKB
ABVZP
ABXHF
ACDLN
ACEJA
ACOZI
ACRPL
ADNMO
ADXHL
AEMFK
AFZFC
AGQPQ
AKMAY
AMVHM
ANOYL
CITATION
PHGZM
PHGZT
3V.
7XB
8FE
8FG
8FK
L6V
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c360t-6792b997783bc44237b1beb345f9de71236fbe128b11bdbdc18f3c7b6b74633d3
IEDL.DBID BENPR
ISSN 0004-9727
IngestDate Fri Jul 25 11:45:10 EDT 2025
Tue Jul 01 02:42:45 EDT 2025
Thu Apr 24 23:01:03 EDT 2025
Wed Mar 13 05:55:34 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords divisor problems
exponential sums
11L07
11L20
11B83
Beatty sequences
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c360t-6792b997783bc44237b1beb345f9de71236fbe128b11bdbdc18f3c7b6b74633d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5505-2671
OpenAccessLink https://doi.org/10.1017/s0004972722000181
PQID 2756658429
PQPubID 5514771
PageCount 8
ParticipantIDs proquest_journals_2756658429
crossref_citationtrail_10_1017_S0004972722000181
crossref_primary_10_1017_S0004972722000181
cambridge_journals_10_1017_S0004972722000181
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20221001
PublicationDateYYYYMMDD 2022-10-01
PublicationDate_xml – month: 10
  year: 2022
  text: 20221001
  day: 01
PublicationDecade 2020
PublicationPlace Cambridge, UK
PublicationPlace_xml – name: Cambridge, UK
– name: Cambridge
PublicationTitle Bulletin of the Australian Mathematical Society
PublicationTitleAlternate Bull. Aust. Math. Soc
PublicationYear 2022
Publisher Cambridge University Press
Publisher_xml – name: Cambridge University Press
References 1926; 24
2021; 197
1995; 70
1977; 24
2006; 13
1931; 33
1997; 42
1948; 12
2009; 136
2004; 47
1955; 2
S0004972722000181_r1
Zhai (S0004972722000181_r14) 1997; 42
S0004972722000181_r2
S0004972722000181_r11
S0004972722000181_r3
S0004972722000181_r10
S0004972722000181_r4
S0004972722000181_r12
Vinogradov (S0004972722000181_r13) 2004
Kuipers (S0004972722000181_r8) 1974
Iwaniec (S0004972722000181_r6) 2004
Erdős (S0004972722000181_r5) 1948; 12
Lü (S0004972722000181_r9) 2004; 47
S0004972722000181_r7
References_xml – volume: 13
  start-page: 539
  year: 2006
  end-page: 547
  article-title: Short character sums with Beatty sequences
  publication-title: Math. Res. Lett.
– volume: 136
  start-page: 81
  year: 2009
  end-page: 89
  article-title: Arithmetic functions on Beatty sequences
  publication-title: Acta Arith.
– volume: 47
  start-page: 1213
  year: 2004
  end-page: 1216
  article-title: The divisor problem for the Beatty sequences
  publication-title: Acta Math. Sinica (Chin. Ser.)
– volume: 197
  start-page: 93
  year: 2021
  end-page: 104
  article-title: Metric results on summatory arithmetic functions on Beatty sets
  publication-title: Acta Arith.
– volume: 42
  start-page: 804
  year: 1997
  end-page: 806
  article-title: Note on a result of Abercrombie
  publication-title: Chinese Sci. Bull.
– volume: 2
  start-page: 1
  year: 1955
  end-page: 20
  article-title: Rational approximations to algebraic numbers
  publication-title: Mathematika
– volume: 70
  start-page: 195
  year: 1995
  end-page: 207
  article-title: Beatty sequences and multiplicative number theory
  publication-title: Acta Arith.
– volume: 33
  start-page: 544
  year: 1931
  end-page: 563
  article-title: Some problems of Diophantine approximation I
  publication-title: Math. Z.
– volume: 24
  start-page: 706
  year: 1926
  end-page: 714
  article-title: Zur metrischen Theorie der diophantischen Approximationen
  publication-title: Math. Z.
– volume: 12
  start-page: 67
  year: 1948
  end-page: 74
  article-title: Some remarks on Diophantine approximations
  publication-title: J. Indian Math. Soc. (N.S.)
– volume: 24
  start-page: 135
  year: 1977
  end-page: 141
  article-title: modulo 1
  publication-title: Mathematika
– ident: S0004972722000181_r11
  doi: 10.4064/aa200128-10-6
– ident: S0004972722000181_r1
  doi: 10.4064/aa-70-3-195-207
– ident: S0004972722000181_r10
  doi: 10.1112/S0025579300000644
– volume: 47
  start-page: 1213
  year: 2004
  ident: S0004972722000181_r9
  article-title: The divisor problem for the Beatty sequences
  publication-title: Acta Math. Sinica (Chin. Ser.)
– volume-title: The Method of Trigonometrical Sums in the Theory of Numbers
  year: 2004
  ident: S0004972722000181_r13
– volume: 12
  start-page: 67
  year: 1948
  ident: S0004972722000181_r5
  article-title: Some remarks on Diophantine approximations
  publication-title: J. Indian Math. Soc. (N.S.)
– volume-title: Uniform Distribution of Sequences
  year: 1974
  ident: S0004972722000181_r8
– ident: S0004972722000181_r4
  doi: 10.1007/BF01174369
– ident: S0004972722000181_r12
  doi: 10.1112/S0025579300009025
– volume-title: Analytic Number Theory
  year: 2004
  ident: S0004972722000181_r6
– volume: 42
  start-page: 804
  year: 1997
  ident: S0004972722000181_r14
  article-title: Note on a result of Abercrombie
  publication-title: Chinese Sci. Bull.
– ident: S0004972722000181_r2
  doi: 10.4064/aa136-1-6
– ident: S0004972722000181_r3
  doi: 10.4310/MRL.2006.v13.n4.a4
– ident: S0004972722000181_r7
  doi: 10.1007/BF01216806
SSID ssj0045528
Score 2.2843375
Snippet We consider sums involving the divisor function over nonhomogeneous ( $\beta \neq 0$ ) Beatty sequences $ \mathcal {B}_{\alpha ,\beta }:=\{[\alpha n+\beta...
We consider sums involving the divisor function over nonhomogeneous ($\beta \neq 0$) Beatty sequences $ \mathcal {B}_{\alpha ,\beta }:=\{[\alpha n+\beta...
SourceID proquest
crossref
cambridge
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 280
SubjectTerms Estimates
Mathematical functions
Sequences
Title ON THE DIVISOR FUNCTION OVER NONHOMOGENEOUS BEATTY SEQUENCES
URI https://www.cambridge.org/core/product/identifier/S0004972722000181/type/journal_article
https://www.proquest.com/docview/2756658429
Volume 106
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8JAEN4oXPRgfEYUyR48GRvbbrvLJiYGtBVMaBUowRPp7LYnAyj4_-2UFkJMOLebbGYn37y_IeRWJEmqmRsbqW3GWYAiwYi5KQ2pgSlXCS4AB5x7Ae9EztvYHRcJt0XRVlliYg7UeqYwR_6ANOVoLW35NP82cGsUVleLFRr7pJpBcDMLvqptL3jvl1jsuK69wmLTMWRmqsu6Zk4ajd4x1iFxWsVCYusNu8K2ldoG6dzy-MfkqHAZaWv1xidkL5meksPemm91cUYew4AOOx596Y66g7BP_SjIm0NoOPL6NAiDTtgLsUstjAa07bWGw0868D4izC8Nzknke8PnjlHsRTAU4-bS4ELaIDPHrclAOdjXAhZkQbHjplInAvlUUkgyeYBlgQatrGbKlAAOwuGMaXZBKtPZNLkkNOaOVrGlLWAcfSOZxgLcJLaUDTHXUCP3a5lMCu1eTFadYWLyT4Q1YpZim6iCYxxXXXztOnK3PjJfEWzs-rlevsXmNhvNuNr9-Zoc2Di8kLfi1Ull-fOb3GQuxRIaZL_pvzYK7fkDJYbALg
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOqLxEoS0-0AsiIokTey2BqpZmybbdRHSTqpxCxnZOaFvYRYg_xW-sJ9nsqkLaW8-Jo2g8nofnm28A3kprG8Pj2mtCv3YJikKvFr7ylEGuYy2FRGpwHmciLaOTy_hyA_71vTAEq-xtYmuozZWmO_IPRFNO3jJUB9c_PZoaRdXVfoRGpxan9u8fl7LNPo2O3f7uh-EwKT6n3mKqgKe58OeekCpE5cKeAUcdESoEA3QpZRQ3ylhJbCQNWme2MQjQoNHBoOFaokAZCc4Nd9-9B_cjzhWdqMHwS2_5ozgOO8vvR55ygUFfRW0pqikWp6on9cYERKO94nK47RNvu4TWzw234PEiQGWHnUY9gQ07fQqPxkt219kz-JhnrEgTdjy6GE3yczYssxaKwvKL5JxleZbm45wwcXk5YUfJYVF8Y5Pka0m3WZPnUN6JvF7A5vRqal8Cq0VkdB2YALmgSEw1tcTY1oEOsRYGt-H9UibV4izNqg6HJqv_RLgNfi-2Si8YzWmwxo91S94tl1x3dB7rXt7p92L1Nys9fLX-8Rt4kBbjs-pslJ2-hochtU20IMAd2Jz_-m13XTAzx71Wgxh8v2uVvQE9dPqY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVEJwQDxFocAe4IKwanvt3a5EhVriKKHELklctSfj2V2fUFpIEOpf66_rjh-JKqTcerbXsmZn57HzzTcA76W1leFx6VWhX7oERaFXCl95yiDXsZZCIjU4j1MxzKNvZ_HZFlx3vTAEq-xsYm2ozYWmO_I9oiknbxmqvaqFRZz0B18uf3s0QYoqrd04jUZFju3VP5e-LQ5GfbfXH8JwkMy-Dr12woCnufCXnpAqROVCoH2OOiKECAbo0ssorpSxkphJKrTOhGMQoEGjg_2Ka4kCZSQ4N9x99x5sS5cV-T3YPkrSk0nnB6I4Dhs_4EeecmFCV1OtCaspMqcaKHXKBESqvWZ2uO0hbzuI2usNHsOjNlxlh41-PYEtO38KD8crrtfFM_icpWw2TFh_dDqaZhM2yNMamMKy02TC0iwdZuOMEHJZPmVHyeFsds6myY-c7ramzyG_E4m9gN78Ym5fAitFZHQZmAC5oLhMVaXE2JaBDrEUBnfg00omRXuyFkWDSpPFfyLcAb8TW6FbfnMas_Fr05KPqyWXDbnHppd3u71Y_81aK19tfvwO7jt1Lb6P0uPX8CCkHooaEbgLveWfv_aNi2yW-LZVIQY_71prbwCyJAA5
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ON+THE+DIVISOR+FUNCTION+OVER+NONHOMOGENEOUS+BEATTY+SEQUENCES&rft.jtitle=Bulletin+of+the+Australian+Mathematical+Society&rft.au=ZHANG%2C+WEI&rft.date=2022-10-01&rft.pub=Cambridge+University+Press&rft.issn=0004-9727&rft.eissn=1755-1633&rft.volume=106&rft.issue=2&rft.spage=280&rft.epage=287&rft_id=info:doi/10.1017%2FS0004972722000181&rft.externalDocID=10_1017_S0004972722000181
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-9727&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-9727&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-9727&client=summon