ON THE DIVISOR FUNCTION OVER NONHOMOGENEOUS BEATTY SEQUENCES
We consider sums involving the divisor function over nonhomogeneous ( $\beta \neq 0$ ) Beatty sequences $ \mathcal {B}_{\alpha ,\beta }:=\{[\alpha n+\beta ]\}_{n=1}^{\infty } $ and show that $$ \begin{align*} \sum_{n\leq N,\ n\in\mathcal{B}_{\alpha,\beta}}d(n) =\alpha^{-1}\sum_{m\leq N}d(m) +O(N^{1-...
Saved in:
Published in | Bulletin of the Australian Mathematical Society Vol. 106; no. 2; pp. 280 - 287 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Cambridge, UK
Cambridge University Press
01.10.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We consider sums involving the divisor function over nonhomogeneous (
$\beta \neq 0$
) Beatty sequences
$ \mathcal {B}_{\alpha ,\beta }:=\{[\alpha n+\beta ]\}_{n=1}^{\infty } $
and show that
$$ \begin{align*} \sum_{n\leq N,\ n\in\mathcal{B}_{\alpha,\beta}}d(n) =\alpha^{-1}\sum_{m\leq N}d(m) +O(N^{1-1/(\tau+1)+\varepsilon}), \end{align*} $$
where N is a sufficiently large integer,
$\alpha $
is of finite type
$\tau $
and
$\beta \neq 0$
. Previously, such estimates were only obtained for homogeneous Beatty sequences or for almost all
$\alpha $
. |
---|---|
AbstractList | We consider sums involving the divisor function over nonhomogeneous (
$\beta \neq 0$
) Beatty sequences
$ \mathcal {B}_{\alpha ,\beta }:=\{[\alpha n+\beta ]\}_{n=1}^{\infty } $
and show that
$$ \begin{align*} \sum_{n\leq N,\ n\in\mathcal{B}_{\alpha,\beta}}d(n) =\alpha^{-1}\sum_{m\leq N}d(m) +O(N^{1-1/(\tau+1)+\varepsilon}), \end{align*} $$
where
N
is a sufficiently large integer,
$\alpha $
is of finite type
$\tau $
and
$\beta \neq 0$
. Previously, such estimates were only obtained for homogeneous Beatty sequences or for almost all
$\alpha $
. We consider sums involving the divisor function over nonhomogeneous ( $\beta \neq 0$ ) Beatty sequences $ \mathcal {B}_{\alpha ,\beta }:=\{[\alpha n+\beta ]\}_{n=1}^{\infty } $ and show that $$ \begin{align*} \sum_{n\leq N,\ n\in\mathcal{B}_{\alpha,\beta}}d(n) =\alpha^{-1}\sum_{m\leq N}d(m) +O(N^{1-1/(\tau+1)+\varepsilon}), \end{align*} $$ where N is a sufficiently large integer, $\alpha $ is of finite type $\tau $ and $\beta \neq 0$ . Previously, such estimates were only obtained for homogeneous Beatty sequences or for almost all $\alpha $ . We consider sums involving the divisor function over nonhomogeneous ($\beta \neq 0$) Beatty sequences $ \mathcal {B}_{\alpha ,\beta }:=\{[\alpha n+\beta ]\}_{n=1}^{\infty } $ and show that $$ \begin{align*} \sum_{n\leq N,\ n\in\mathcal{B}_{\alpha,\beta}}d(n) =\alpha^{-1}\sum_{m\leq N}d(m) +O(N^{1-1/(\tau+1)+\varepsilon}), \end{align*} $$where N is a sufficiently large integer, $\alpha $ is of finite type $\tau $ and $\beta \neq 0$. Previously, such estimates were only obtained for homogeneous Beatty sequences or for almost all $\alpha $. |
Author | ZHANG, WEI |
Author_xml | – sequence: 1 givenname: WEI orcidid: 0000-0002-5505-2671 surname: ZHANG fullname: ZHANG, WEI email: zhangweimath@126.com organization: School of Mathematics and Statistics, Henan University, Kaifeng 475004, Henan, PR China |
BookMark | eNp9kE1Pg0AQhjemJrbVH-CNxDO6swssJF4qbgtJZWOBJp4IC4uhaaEu9OC_l6ZNTDR6mq_3mZm8EzRq2kYhdAv4HjCwhxhjbHmMMEKGDFy4QGNgtm2CQ-kIjY9j8zi_QpOu2wyVbRN3jB5FZCQBN57DdRiLlTFPIz8Jh6ZY85URiSgQL2LBIy7S2HjisyR5M2L-mvLI5_E1uqzybaduznGK0jlP_MBcikXoz5ZmQR3cmw7ziPQ8xlwqC8silEmQSlLLrrxSMSDUqaQC4koAWcqyALeiBZOOZNbwfUmn6O60d6_bj4Pq-mzTHnQznMwIsx3Hdi3iDSp2UhW67Tqtqqyo-7yv26bXeb3NAGdHq7JfVg0k_CD3ut7l-vNfhp6ZfCd1Xb6r76f-pr4A-pV0sA |
CitedBy_id | crossref_primary_10_1007_s11139_025_01029_2 crossref_primary_10_1007_s40590_022_00482_z |
Cites_doi | 10.4064/aa200128-10-6 10.4064/aa-70-3-195-207 10.1112/S0025579300000644 10.1007/BF01174369 10.1112/S0025579300009025 10.4064/aa136-1-6 10.4310/MRL.2006.v13.n4.a4 10.1007/BF01216806 |
ContentType | Journal Article |
Copyright | The Author(s), 2022. Published by Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc. |
Copyright_xml | – notice: The Author(s), 2022. Published by Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc. |
DBID | AAYXX CITATION 3V. 7XB 88I 8FE 8FG 8FK ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ L6V M2P M7S PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U |
DOI | 10.1017/S0004972722000181 |
DatabaseName | CrossRef ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni Edition) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Engineering Collection Science Database Engineering Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic |
DatabaseTitle | CrossRef ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) |
DatabaseTitleList | CrossRef ProQuest Central Student |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1755-1633 |
EndPage | 287 |
ExternalDocumentID | 10_1017_S0004972722000181 |
GroupedDBID | --Z -1D -1F -2P -2V -E. -~6 -~N -~X .FH 09C 09E 0E1 0R~ 23N 2WC 4.4 5GY 5VS 6J9 6TJ 6~7 74X 74Y 7~V 88I 9M5 AAAZR AABES AABWE AACJH AAEED AAGFV AAKTX AAMNQ AANRG AARAB AASVR AAUIS AAUKB ABBXD ABBZL ABGDZ ABITZ ABJCF ABJNI ABKKG ABMWE ABMYL ABQTM ABROB ABTAH ABUWG ABVFV ABXAU ABZCX ABZUI ACBMC ACCHT ACETC ACGFO ACGFS ACIMK ACMRT ACQFJ ACREK ACUIJ ACUYZ ACWGA ACYZP ACZBM ACZUX ACZWT ADCGK ADDNB ADFEC ADGEJ ADKIL ADOCW ADOVH ADOVT ADVJH AEBAK AEBPU AEGXH AEHGV AEMTW AENCP AENEX AENGE AEYYC AFFNX AFFUJ AFKQG AFKRA AFLOS AFLVW AFUTZ AGABE AGBYD AGJUD AGLWM AGOOT AHQXX AHRGI AI. AIAGR AIGNW AIHIV AIOIP AISIE AJ7 AJCYY AJPFC AJQAS AKZCZ ALMA_UNASSIGNED_HOLDINGS ALWZO AQJOH ARABE ARZZG ATUCA AUXHV AYIQA AZQEC BBLKV BCGOX BENPR BESQT BGHMG BGLVJ BJBOZ BLZWO BMAJL BQFHP C0O CAG CBIIA CCPQU CCQAD CCUQV CDIZJ CFAFE CFBFF CGQII CHEAL CJCSC COF CS3 DC4 DOHLZ DU5 DWQXO EBS EGQIC EJD ESX GNUQQ HCIFZ HG- HST HZ~ H~9 I.6 I.7 I.9 IH6 IOEEP IOO IS6 I~P J36 J38 J3A JHPGK JQKCU KAFGG KC5 KCGVB KFECR KWQ L98 LHUNA LW7 M-V M2P M7S M7~ M8. NIKVX NMFBF NZEOI O9- OHT OK1 P2P PTHSS PYCCK RAMDC RCA ROL RR0 S10 S6- S6U SAAAG T9M TN5 TWZ UPT UT1 VH1 WFFJZ WQ3 WXU WXY WYP ZCG ZDLDU ZJOSE ZMEZD ZY4 ZYDXJ ~V1 AAKNA AATMM AAYXX ABHFL ABVKB ABVZP ABXHF ACDLN ACEJA ACOZI ACRPL ADNMO ADXHL AEMFK AFZFC AGQPQ AKMAY AMVHM ANOYL CITATION PHGZM PHGZT 3V. 7XB 8FE 8FG 8FK L6V PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U |
ID | FETCH-LOGICAL-c360t-6792b997783bc44237b1beb345f9de71236fbe128b11bdbdc18f3c7b6b74633d3 |
IEDL.DBID | BENPR |
ISSN | 0004-9727 |
IngestDate | Fri Jul 25 11:45:10 EDT 2025 Tue Jul 01 02:42:45 EDT 2025 Thu Apr 24 23:01:03 EDT 2025 Wed Mar 13 05:55:34 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | divisor problems exponential sums 11L07 11L20 11B83 Beatty sequences |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c360t-6792b997783bc44237b1beb345f9de71236fbe128b11bdbdc18f3c7b6b74633d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-5505-2671 |
OpenAccessLink | https://doi.org/10.1017/s0004972722000181 |
PQID | 2756658429 |
PQPubID | 5514771 |
PageCount | 8 |
ParticipantIDs | proquest_journals_2756658429 crossref_citationtrail_10_1017_S0004972722000181 crossref_primary_10_1017_S0004972722000181 cambridge_journals_10_1017_S0004972722000181 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20221001 |
PublicationDateYYYYMMDD | 2022-10-01 |
PublicationDate_xml | – month: 10 year: 2022 text: 20221001 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Cambridge, UK |
PublicationPlace_xml | – name: Cambridge, UK – name: Cambridge |
PublicationTitle | Bulletin of the Australian Mathematical Society |
PublicationTitleAlternate | Bull. Aust. Math. Soc |
PublicationYear | 2022 |
Publisher | Cambridge University Press |
Publisher_xml | – name: Cambridge University Press |
References | 1926; 24 2021; 197 1995; 70 1977; 24 2006; 13 1931; 33 1997; 42 1948; 12 2009; 136 2004; 47 1955; 2 S0004972722000181_r1 Zhai (S0004972722000181_r14) 1997; 42 S0004972722000181_r2 S0004972722000181_r11 S0004972722000181_r3 S0004972722000181_r10 S0004972722000181_r4 S0004972722000181_r12 Vinogradov (S0004972722000181_r13) 2004 Kuipers (S0004972722000181_r8) 1974 Iwaniec (S0004972722000181_r6) 2004 Erdős (S0004972722000181_r5) 1948; 12 Lü (S0004972722000181_r9) 2004; 47 S0004972722000181_r7 |
References_xml | – volume: 13 start-page: 539 year: 2006 end-page: 547 article-title: Short character sums with Beatty sequences publication-title: Math. Res. Lett. – volume: 136 start-page: 81 year: 2009 end-page: 89 article-title: Arithmetic functions on Beatty sequences publication-title: Acta Arith. – volume: 47 start-page: 1213 year: 2004 end-page: 1216 article-title: The divisor problem for the Beatty sequences publication-title: Acta Math. Sinica (Chin. Ser.) – volume: 197 start-page: 93 year: 2021 end-page: 104 article-title: Metric results on summatory arithmetic functions on Beatty sets publication-title: Acta Arith. – volume: 42 start-page: 804 year: 1997 end-page: 806 article-title: Note on a result of Abercrombie publication-title: Chinese Sci. Bull. – volume: 2 start-page: 1 year: 1955 end-page: 20 article-title: Rational approximations to algebraic numbers publication-title: Mathematika – volume: 70 start-page: 195 year: 1995 end-page: 207 article-title: Beatty sequences and multiplicative number theory publication-title: Acta Arith. – volume: 33 start-page: 544 year: 1931 end-page: 563 article-title: Some problems of Diophantine approximation I publication-title: Math. Z. – volume: 24 start-page: 706 year: 1926 end-page: 714 article-title: Zur metrischen Theorie der diophantischen Approximationen publication-title: Math. Z. – volume: 12 start-page: 67 year: 1948 end-page: 74 article-title: Some remarks on Diophantine approximations publication-title: J. Indian Math. Soc. (N.S.) – volume: 24 start-page: 135 year: 1977 end-page: 141 article-title: modulo 1 publication-title: Mathematika – ident: S0004972722000181_r11 doi: 10.4064/aa200128-10-6 – ident: S0004972722000181_r1 doi: 10.4064/aa-70-3-195-207 – ident: S0004972722000181_r10 doi: 10.1112/S0025579300000644 – volume: 47 start-page: 1213 year: 2004 ident: S0004972722000181_r9 article-title: The divisor problem for the Beatty sequences publication-title: Acta Math. Sinica (Chin. Ser.) – volume-title: The Method of Trigonometrical Sums in the Theory of Numbers year: 2004 ident: S0004972722000181_r13 – volume: 12 start-page: 67 year: 1948 ident: S0004972722000181_r5 article-title: Some remarks on Diophantine approximations publication-title: J. Indian Math. Soc. (N.S.) – volume-title: Uniform Distribution of Sequences year: 1974 ident: S0004972722000181_r8 – ident: S0004972722000181_r4 doi: 10.1007/BF01174369 – ident: S0004972722000181_r12 doi: 10.1112/S0025579300009025 – volume-title: Analytic Number Theory year: 2004 ident: S0004972722000181_r6 – volume: 42 start-page: 804 year: 1997 ident: S0004972722000181_r14 article-title: Note on a result of Abercrombie publication-title: Chinese Sci. Bull. – ident: S0004972722000181_r2 doi: 10.4064/aa136-1-6 – ident: S0004972722000181_r3 doi: 10.4310/MRL.2006.v13.n4.a4 – ident: S0004972722000181_r7 doi: 10.1007/BF01216806 |
SSID | ssj0045528 |
Score | 2.2843375 |
Snippet | We consider sums involving the divisor function over nonhomogeneous (
$\beta \neq 0$
) Beatty sequences
$ \mathcal {B}_{\alpha ,\beta }:=\{[\alpha n+\beta... We consider sums involving the divisor function over nonhomogeneous ($\beta \neq 0$) Beatty sequences $ \mathcal {B}_{\alpha ,\beta }:=\{[\alpha n+\beta... |
SourceID | proquest crossref cambridge |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 280 |
SubjectTerms | Estimates Mathematical functions Sequences |
Title | ON THE DIVISOR FUNCTION OVER NONHOMOGENEOUS BEATTY SEQUENCES |
URI | https://www.cambridge.org/core/product/identifier/S0004972722000181/type/journal_article https://www.proquest.com/docview/2756658429 |
Volume | 106 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8JAEN4oXPRgfEYUyR48GRvbbrvLJiYGtBVMaBUowRPp7LYnAyj4_-2UFkJMOLebbGYn37y_IeRWJEmqmRsbqW3GWYAiwYi5KQ2pgSlXCS4AB5x7Ae9EztvYHRcJt0XRVlliYg7UeqYwR_6ANOVoLW35NP82cGsUVleLFRr7pJpBcDMLvqptL3jvl1jsuK69wmLTMWRmqsu6Zk4ajd4x1iFxWsVCYusNu8K2ldoG6dzy-MfkqHAZaWv1xidkL5meksPemm91cUYew4AOOx596Y66g7BP_SjIm0NoOPL6NAiDTtgLsUstjAa07bWGw0868D4izC8Nzknke8PnjlHsRTAU4-bS4ELaIDPHrclAOdjXAhZkQbHjplInAvlUUkgyeYBlgQatrGbKlAAOwuGMaXZBKtPZNLkkNOaOVrGlLWAcfSOZxgLcJLaUDTHXUCP3a5lMCu1eTFadYWLyT4Q1YpZim6iCYxxXXXztOnK3PjJfEWzs-rlevsXmNhvNuNr9-Zoc2Di8kLfi1Ull-fOb3GQuxRIaZL_pvzYK7fkDJYbALg |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOqLxEoS0-0AsiIokTey2BqpZmybbdRHSTqpxCxnZOaFvYRYg_xW-sJ9nsqkLaW8-Jo2g8nofnm28A3kprG8Pj2mtCv3YJikKvFr7ylEGuYy2FRGpwHmciLaOTy_hyA_71vTAEq-xtYmuozZWmO_IPRFNO3jJUB9c_PZoaRdXVfoRGpxan9u8fl7LNPo2O3f7uh-EwKT6n3mKqgKe58OeekCpE5cKeAUcdESoEA3QpZRQ3ylhJbCQNWme2MQjQoNHBoOFaokAZCc4Nd9-9B_cjzhWdqMHwS2_5ozgOO8vvR55ygUFfRW0pqikWp6on9cYERKO94nK47RNvu4TWzw234PEiQGWHnUY9gQ07fQqPxkt219kz-JhnrEgTdjy6GE3yczYssxaKwvKL5JxleZbm45wwcXk5YUfJYVF8Y5Pka0m3WZPnUN6JvF7A5vRqal8Cq0VkdB2YALmgSEw1tcTY1oEOsRYGt-H9UibV4izNqg6HJqv_RLgNfi-2Si8YzWmwxo91S94tl1x3dB7rXt7p92L1Nys9fLX-8Rt4kBbjs-pslJ2-hochtU20IMAd2Jz_-m13XTAzx71Wgxh8v2uVvQE9dPqY |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVEJwQDxFocAe4IKwanvt3a5EhVriKKHELklctSfj2V2fUFpIEOpf66_rjh-JKqTcerbXsmZn57HzzTcA76W1leFx6VWhX7oERaFXCl95yiDXsZZCIjU4j1MxzKNvZ_HZFlx3vTAEq-xsYm2ozYWmO_I9oiknbxmqvaqFRZz0B18uf3s0QYoqrd04jUZFju3VP5e-LQ5GfbfXH8JwkMy-Dr12woCnufCXnpAqROVCoH2OOiKECAbo0ssorpSxkphJKrTOhGMQoEGjg_2Ka4kCZSQ4N9x99x5sS5cV-T3YPkrSk0nnB6I4Dhs_4EeecmFCV1OtCaspMqcaKHXKBESqvWZ2uO0hbzuI2usNHsOjNlxlh41-PYEtO38KD8crrtfFM_icpWw2TFh_dDqaZhM2yNMamMKy02TC0iwdZuOMEHJZPmVHyeFsds6myY-c7ramzyG_E4m9gN78Ym5fAitFZHQZmAC5oLhMVaXE2JaBDrEUBnfg00omRXuyFkWDSpPFfyLcAb8TW6FbfnMas_Fr05KPqyWXDbnHppd3u71Y_81aK19tfvwO7jt1Lb6P0uPX8CCkHooaEbgLveWfv_aNi2yW-LZVIQY_71prbwCyJAA5 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ON+THE+DIVISOR+FUNCTION+OVER+NONHOMOGENEOUS+BEATTY+SEQUENCES&rft.jtitle=Bulletin+of+the+Australian+Mathematical+Society&rft.au=ZHANG%2C+WEI&rft.date=2022-10-01&rft.pub=Cambridge+University+Press&rft.issn=0004-9727&rft.eissn=1755-1633&rft.volume=106&rft.issue=2&rft.spage=280&rft.epage=287&rft_id=info:doi/10.1017%2FS0004972722000181&rft.externalDocID=10_1017_S0004972722000181 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-9727&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-9727&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-9727&client=summon |