All-solid-state hybrid electrode configuration for high-performance all-solid-state batteries: Comparative study with composite electrode and diffusion-dependent electrode
To realize high-performance all-solid-state batteries, an efficient design for all-solid-state electrodes is vital. Composite electrode, which is comprised of well-mixed active material and solid electrolyte, is a typical structure to build well-percolated ionic pathways within the electrode. In con...
Saved in:
Published in | Journal of power sources Vol. 518; p. 230736 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
15.01.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | To realize high-performance all-solid-state batteries, an efficient design for all-solid-state electrodes is vital. Composite electrode, which is comprised of well-mixed active material and solid electrolyte, is a typical structure to build well-percolated ionic pathways within the electrode. In contrast, diffusion-dependent electrode, which consists mostly of active material, is an emerging approach that utilizes interparticle diffusion between active material particles for charge/discharge. This design enables maximization of energy density and simplification of the fabrication process. Herein, we present a hybrid all-solid-state electrode that combines the merits of each electrode as a new electrode concept. This electrode consists of a bilayer structure of the composite electrode and the diffusion-dependent electrode, and its electrochemical features such as initial Coulombic efficiency, capacity retention, and energy density are systematically analyzed. Owing to the active utilization of lithium-ion transports via percolated solid electrolyte particles and interparticle diffusion of active material particles, the graphite-based hybrid electrode with a practically meaningful capacity (∼4 mA h cm−2) is demonstrated to deliver moderately high energy densities at various C-rates. In particular, silicon/graphite-based hybrid electrode can exhibit high normalized capacities of 5.83 mA h cm−2 and 1300 mA h cm−3, which are among the highest values reported to date for all-solid-state batteries.
[Display omitted]
•Hybrid electrode design is proposed as a high-performance all-solid-state electrode.•This electrode utilizes lithium-ion conduction and diffusion for charge/discharge.•The silicon/graphite-based hybrid electrode realizes excellent energy density. |
---|---|
ISSN: | 0378-7753 1873-2755 |
DOI: | 10.1016/j.jpowsour.2021.230736 |