Vibronic coupling in the ground and excited states of the imidazole radical cation

Vibronic interactions in the ground and two excited states of the imidazole radical cation, X2A″ (π−1), A2A′ (nσ−1), and B2A″ (π−1), and the associated nuclear dynamics were studied theoretically. The results were used to interpret the recent photoelectron measurements [M. Patanen et al., J. Chem. P...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of chemical physics Vol. 157; no. 17; pp. 174309 - 174324
Main Authors Trofimov, A. B., Skitnevskaya, A. D., Grigoricheva, E. K., Gromov, E. V., Köppel, H.
Format Journal Article
LanguageEnglish
Published Melville American Institute of Physics 07.11.2022
Subjects
Online AccessGet full text
ISSN0021-9606
1089-7690
1089-7690
DOI10.1063/5.0118148

Cover

Loading…
Abstract Vibronic interactions in the ground and two excited states of the imidazole radical cation, X2A″ (π−1), A2A′ (nσ−1), and B2A″ (π−1), and the associated nuclear dynamics were studied theoretically. The results were used to interpret the recent photoelectron measurements [M. Patanen et al., J. Chem. Phys. 155, 054304 (2021)]. The present high-level electronic structure calculations employing, in particular, the single, double, and triple excitations and equation-of-motion coupled-cluster method accounting for single and double excitation approaches and complete basis set extrapolation technique for the evaluation of the vertical ionization energies of imidazole indicate that the A 2A′ and B 2A″ states are very close in energy and subject to non-adiabatic effects. Our modeling confirms the existence of pronounced vibronic coupling of the A 2A′ and B 2A″ states. Moreover, despite the large energy gap of nearly 1.3 eV, the ground state X 2A″ is efficiently coupled to the A 2A′ state. The modeling was performed within the framework of the three-state linear vibronic coupling problem employing Hamiltonians expressed in a basis of diabatic electronic states and parameters derived from ab initio calculations. The ionization spectrum was computed using the multi-configuration time-dependent Hartree method. The calculated spectrum is in good agreement with the experimental data, allowing for some interpretation of the observed features to be proposed.
AbstractList Vibronic interactions in the ground and two excited states of the imidazole radical cation, X2A″ (π−1), A2A′ (nσ−1), and B2A″ (π−1), and the associated nuclear dynamics were studied theoretically. The results were used to interpret the recent photoelectron measurements [M. Patanen et al., J. Chem. Phys. 155, 054304 (2021)]. The present high-level electronic structure calculations employing, in particular, the single, double, and triple excitations and equation-of-motion coupled-cluster method accounting for single and double excitation approaches and complete basis set extrapolation technique for the evaluation of the vertical ionization energies of imidazole indicate that the A 2A′ and B 2A″ states are very close in energy and subject to non-adiabatic effects. Our modeling confirms the existence of pronounced vibronic coupling of the A 2A′ and B 2A″ states. Moreover, despite the large energy gap of nearly 1.3 eV, the ground state X 2A″ is efficiently coupled to the A 2A′ state. The modeling was performed within the framework of the three-state linear vibronic coupling problem employing Hamiltonians expressed in a basis of diabatic electronic states and parameters derived from ab initio calculations. The ionization spectrum was computed using the multi-configuration time-dependent Hartree method. The calculated spectrum is in good agreement with the experimental data, allowing for some interpretation of the observed features to be proposed.
Vibronic interactions in the ground and two excited states of the imidazole radical cation, X2A″ (π−1), A2A′ (nσ−1), and B2A″ (π−1), and the associated nuclear dynamics were studied theoretically. The results were used to interpret the recent photoelectron measurements [M. Patanen et al., J. Chem. Phys. 155, 054304 (2021)]. The present high-level electronic structure calculations employing, in particular, the single, double, and triple excitations and equation-of-motion coupled-cluster method accounting for single and double excitation approaches and complete basis set extrapolation technique for the evaluation of the vertical ionization energies of imidazole indicate that the A 2A′ and B 2A″ states are very close in energy and subject to non-adiabatic effects. Our modeling confirms the existence of pronounced vibronic coupling of the A 2A′ and B 2A″ states. Moreover, despite the large energy gap of nearly 1.3 eV, the ground state X 2A″ is efficiently coupled to the A 2A′ state. The modeling was performed within the framework of the three-state linear vibronic coupling problem employing Hamiltonians expressed in a basis of diabatic electronic states and parameters derived from ab initio calculations. The ionization spectrum was computed using the multi-configuration time-dependent Hartree method. The calculated spectrum is in good agreement with the experimental data, allowing for some interpretation of the observed features to be proposed.
Vibronic interactions in the ground and two excited states of the imidazole radical cation, X2A″ (π-1), A2A' (nσ-1), and B2A″ (π-1), and the associated nuclear dynamics were studied theoretically. The results were used to interpret the recent photoelectron measurements [M. Patanen et al., J. Chem. Phys. 155, 054304 (2021)]. The present high-level electronic structure calculations employing, in particular, the single, double, and triple excitations and equation-of-motion coupled-cluster method accounting for single and double excitation approaches and complete basis set extrapolation technique for the evaluation of the vertical ionization energies of imidazole indicate that the A 2A' and B 2A″ states are very close in energy and subject to non-adiabatic effects. Our modeling confirms the existence of pronounced vibronic coupling of the A 2A' and B 2A″ states. Moreover, despite the large energy gap of nearly 1.3 eV, the ground state X 2A″ is efficiently coupled to the A 2A' state. The modeling was performed within the framework of the three-state linear vibronic coupling problem employing Hamiltonians expressed in a basis of diabatic electronic states and parameters derived from ab initio calculations. The ionization spectrum was computed using the multi-configuration time-dependent Hartree method. The calculated spectrum is in good agreement with the experimental data, allowing for some interpretation of the observed features to be proposed.Vibronic interactions in the ground and two excited states of the imidazole radical cation, X2A″ (π-1), A2A' (nσ-1), and B2A″ (π-1), and the associated nuclear dynamics were studied theoretically. The results were used to interpret the recent photoelectron measurements [M. Patanen et al., J. Chem. Phys. 155, 054304 (2021)]. The present high-level electronic structure calculations employing, in particular, the single, double, and triple excitations and equation-of-motion coupled-cluster method accounting for single and double excitation approaches and complete basis set extrapolation technique for the evaluation of the vertical ionization energies of imidazole indicate that the A 2A' and B 2A″ states are very close in energy and subject to non-adiabatic effects. Our modeling confirms the existence of pronounced vibronic coupling of the A 2A' and B 2A″ states. Moreover, despite the large energy gap of nearly 1.3 eV, the ground state X 2A″ is efficiently coupled to the A 2A' state. The modeling was performed within the framework of the three-state linear vibronic coupling problem employing Hamiltonians expressed in a basis of diabatic electronic states and parameters derived from ab initio calculations. The ionization spectrum was computed using the multi-configuration time-dependent Hartree method. The calculated spectrum is in good agreement with the experimental data, allowing for some interpretation of the observed features to be proposed.
Author Köppel, H.
Trofimov, A. B.
Grigoricheva, E. K.
Skitnevskaya, A. D.
Gromov, E. V.
Author_xml – sequence: 1
  givenname: A. B.
  surname: Trofimov
  fullname: Trofimov, A. B.
  organization: 4Max-Planck Institute for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany
– sequence: 2
  givenname: A. D.
  surname: Skitnevskaya
  fullname: Skitnevskaya, A. D.
  organization: 4Max-Planck Institute for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany
– sequence: 3
  givenname: E. K.
  surname: Grigoricheva
  fullname: Grigoricheva, E. K.
  organization: 4Max-Planck Institute for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany
– sequence: 4
  givenname: E. V.
  surname: Gromov
  fullname: Gromov, E. V.
  organization: 4Max-Planck Institute for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany
– sequence: 5
  givenname: H.
  surname: Köppel
  fullname: Köppel, H.
  organization: Theoretische Chemie, Physikalisch-Chemisches Institut, Universität Heidelberg
BookMark eNp90MtKAzEUBuAgFWyrC98g4EaFaU9mkrkspXiDgiDqNmQySU2ZJjWZEfXpnV5UqOIiZPOdPzn_APWsswqhYwIjAmkyZiMgJCc030N9AnkRZWkBPdQHiElUpJAeoEEIcwAgWUz76P7JlN5ZI7F07bI2doaNxc2zwjPvWlth0R31Jk2jKhwa0aiAnV4DszCV-HC1wl5URooaS9EYZw_RvhZ1UEfbe4gery4fJjfR9O76dnIxjWSSQhOxvEhkGWc0yZmWhNE8VkJmIKTSOgVdld0ahOW0KoApqYUukpQSKBIhsjImyRCdbnKX3r20KjR8YYJUdS2scm3gcZbQlGSQxx092aFz13rb_W6lurdjBrRTZxslvQvBK82X3iyEf-cE-Kpdzvi23c6Od2xX0Xr9xgtT_zlxvpkIX_I7_tX5H8iXlf4P_07-BMrimG0
CODEN JCPSA6
CitedBy_id crossref_primary_10_1063_5_0128764
crossref_primary_10_1039_D3CP01031G
crossref_primary_10_1063_5_0190034
crossref_primary_10_1063_5_0215910
Cites_doi 10.1016/j.chemphys.2018.07.017
10.1063/1.468900
10.1016/0167-7977(84)90002-9
10.1016/0009-2614(90)87014-i
10.1103/physreva.28.1217
10.1002/9780470142813
10.1007/s004600050342
10.1063/5.0024446
10.1063/1.470315
10.1063/1.464749
10.1142/5406
10.1002/jcc.540140105
10.1016/j.comptc.2019.03.010
10.1063/1.469817
10.1063/1.463007
10.1016/s0009-2614(89)87395-6
10.1063/1.4986405
10.1016/0009-2614(89)85202-9
10.1021/acs.jpca.8b08171
10.1063/5.0058983
10.1016/0301-0104(87)80138-6
10.1007/s00214-003-0439-1
10.1063/1.462569
10.1063/1.456153
10.1146/annurev.physchem.59.032607.093602
10.1016/S0370-1573(99)00047-2
10.1039/d0ob00350f
10.1002/qua.560440836
10.1051/jcp/1965621344
10.1002/qua.560260826
10.1063/1.462652
10.1016/0040-4020(73)80161-9
10.1007/s13361-019-02337-w
10.1021/ja8022384
10.1063/1.458815
10.1103/PhysRev.46.618
10.1021/jp508053m
10.1021/jo01327a010
10.1146/annurev.physchem.55.091602.094335
10.1063/1.458814
10.1063/1.5033425
10.1002/qua.560520806
10.1063/1.479673
10.1063/1.443164
10.1063/1.476645
ContentType Journal Article
Copyright Author(s)
2022 Author(s). Published under an exclusive license by AIP Publishing.
Copyright_xml – notice: Author(s)
– notice: 2022 Author(s). Published under an exclusive license by AIP Publishing.
DBID AAYXX
CITATION
8FD
H8D
L7M
7X8
DOI 10.1063/5.0118148
DatabaseName CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitleList
Technology Research Database
MEDLINE - Academic
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Physics
EISSN 1089-7690
ExternalDocumentID 10_1063_5_0118148
jcp
GrantInformation_xml – fundername: Ministry of Science and Higher Education of the Russian Federation
  grantid: FZZE-2020-0025
  funderid: https://doi.org/10.13039/501100012190
GroupedDBID ---
-DZ
-ET
-~X
123
1UP
2-P
29K
4.4
53G
5VS
85S
AAAAW
AABDS
AAEUA
AAPUP
AAYIH
ABPPZ
ABZEH
ACBRY
ACLYJ
ACNCT
ACZLF
ADCTM
AEJMO
AENEX
AFATG
AFHCQ
AGKCL
AGLKD
AGMXG
AGTJO
AHSDT
AJJCW
AJQPL
ALEPV
ALMA_UNASSIGNED_HOLDINGS
AQWKA
ATXIE
AWQPM
BPZLN
CS3
D-I
DU5
EBS
ESX
F5P
FDOHQ
FFFMQ
HAM
M6X
M71
M73
N9A
NPSNA
O-B
P2P
RIP
RNS
RQS
TN5
TWZ
UPT
WH7
YQT
YZZ
~02
AAGWI
AAYXX
ABJGX
ADMLS
BDMKI
CITATION
8FD
H8D
L7M
7X8
ID FETCH-LOGICAL-c360t-5893cb274385fc15482eac70aceff60fdb8141584d905ecfaf93641093aa7b213
ISSN 0021-9606
1089-7690
IngestDate Fri Jul 11 16:34:06 EDT 2025
Mon Jun 30 05:18:22 EDT 2025
Tue Jul 01 01:12:24 EDT 2025
Thu Apr 24 23:10:14 EDT 2025
Fri Jun 21 00:30:03 EDT 2024
Tue Jul 04 19:18:19 EDT 2023
IsPeerReviewed true
IsScholarly true
Issue 17
Language English
License Published under an exclusive license by AIP Publishing.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c360t-5893cb274385fc15482eac70aceff60fdb8141584d905ecfaf93641093aa7b213
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-1176-026X
0000-0002-6534-7553
0000-0002-9328-1598
0000-0003-4095-5357
0000-0003-3523-7086
PQID 2731542504
PQPubID 2050685
PageCount 16
ParticipantIDs scitation_primary_10_1063_5_0118148
proquest_journals_2731542504
proquest_miscellaneous_2734617082
crossref_primary_10_1063_5_0118148
crossref_citationtrail_10_1063_5_0118148
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20221107
2022-11-07
PublicationDateYYYYMMDD 2022-11-07
PublicationDate_xml – month: 11
  year: 2022
  text: 20221107
  day: 07
PublicationDecade 2020
PublicationPlace Melville
PublicationPlace_xml – name: Melville
PublicationTitle The Journal of chemical physics
PublicationYear 2022
Publisher American Institute of Physics
Publisher_xml – name: American Institute of Physics
References Sarkar, Baishya, Mahapatra (c20) 2018; 515
Zakrzewski, von Niessen (c40) 1993; 14
Trofimov, Holland, Powis, Menzies, Potts, Karlsson, Gromov, Badsyuk, Schirmer (c38) 2017; 146
Shabalin, Camp (c2) 2020; 18
Perchard, Bellocq, Novak (c29) 1965; 62
Koch, Jensen, Jørgensen, Helgaker (c48) 1990; 93
Raghavachari, Trucks, Pople, Head-Gordon (c33) 1989; 157
Purvis, Bartlett (c32) 1982; 76
Cradock, Findlay, Palmer (c4) 1973; 29
Trofimov, Skitnevskaya, Grigoricheva, Gromov, Köppel (c17) 2020; 153
Møller, Plesset (c31) 1934; 46
Rajak, Ghosh, Mahapatra (c19) 2018; 122
Dalgaard, Monkhorst (c50) 1983; 28
Koch, Jørgensen (c49) 1990; 93
Sadlej, Edwards (c30) 1992; 44
Nooijen, Snijders (c45) 1995; 102
Christiansen, Koch, Jørgensen (c47) 1995; 103
Beck, Meyer (c23) 1997; 42
Dunning (c34) 1989; 90
Klasinc, Ruščić, Kajfež, Šunjić (c5) 1978; 5
Meißner, Feketeová, Ribar, Fink, Limão-Vieira, Denifl (c9) 2019; 30
Geertsen, Rittby, Bartlett (c43) 1989; 164
Meyer, Worth (c25) 2003; 109
Trofimov, Powis, Menzies, Holland, Antonsson, Patanen, Nicolas, Miron, Skitnevskaya, Gromov, Köppel (c16) 2018; 149
Zakrzewski, Ortiz (c41) 1994; 52
Feller (c53) 1993; 98
Tentscher, Seidel, Winter, Guerard, Arey (c10) 2015; 119
Stanton, Gauss (c44) 1995; 103
Meyer, Manthe, Cederbaum (c21) 1990; 165
Palmer, Beveridge (c7) 1987; 111
Ghosh, Rajak, Kanakati, Mahapatra (c18) 2019; 1155
Trofimov, Köppel, Schirmer (c15) 1998; 109
Manthe, Meyer, Cederbaum (c22) 1992; 97
Stanton, Gauss (c51) 1999; 111
Kendall, Dunning, Harrison (c35) 1992; 96
Feller (c52) 1992; 96
Patanen, Abid, Pratt, Kivimäki, Trofimov, Skitnevskaya, Grigoricheva, Gromov, Powis, Holland (c3) 2021; 155
Christen, Griffiths, Sheridan (c28) 1982; 37a
Ramsey (c6) 1979; 44
Nolting, Ottosson, Faubel, Hertel, Winter (c8) 2008; 130
Beck, Jäckle, Worth, Meyer (c24) 2000; 324
Sekino, Bartlett (c42) 1984; 26
von Niessen, Schirmer, Cederbaum (c39) 1984; 1
Köppel, Domcke, Cederbaum (c11) 1984; 57
Worth, Cederbaum (c14) 2004; 55
Krylov (c46) 2008; 59
(2023081006522239200_c36) 2010
(2023081006522239200_c47) 1995; 103
(2023081006522239200_c41) 1994; 52
(2023081006522239200_c16) 2018; 149
(2023081006522239200_c5) 1978; 5
(2023081006522239200_c21) 1990; 165
(2023081006522239200_c38) 2017; 146
(2023081006522239200_c49) 1990; 93
(2023081006522239200_c3) 2021; 155
(2023081006522239200_c18) 2019; 1155
Domcke (2023081006522239200_c13) 2004
(2023081006522239200_c42) 1984; 26
(2023081006522239200_c50) 1983; 28
(2023081006522239200_c28) 1982; 37a
(2023081006522239200_c10) 2015; 119
(2023081006522239200_c20) 2018; 515
(2023081006522239200_c17) 2020; 153
(2023081006522239200_c45) 1995; 102
(2023081006522239200_c11) 1984; 57
(2023081006522239200_c39) 1984; 1
(2023081006522239200_c44) 1995; 103
(2023081006522239200_c30) 1992; 44
(2023081006522239200_c27) 1955
(2023081006522239200_c52) 1992; 96
(2023081006522239200_c25) 2003; 109
(2023081006522239200_c6) 1979; 44
(2023081006522239200_c15) 1998; 109
(2023081006522239200_c31) 1934; 46
(2023081006522239200_c48) 1990; 93
(2023081006522239200_c8) 2008; 130
(2023081006522239200_c9) 2019; 30
Domcke (2023081006522239200_c12) 2004
(2023081006522239200_c24) 2000; 324
Katritzky (2023081006522239200_c1) 1984
(2023081006522239200_c33) 1989; 157
(2023081006522239200_c46) 2008; 59
(2023081006522239200_c4) 1973; 29
(2023081006522239200_c14) 2004; 55
(2023081006522239200_c29) 1965; 62
(2023081006522239200_c2) 2020; 18
(2023081006522239200_c22) 1992; 97
(2023081006522239200_c23) 1997; 42
(2023081006522239200_c35) 1992; 96
(2023081006522239200_c26) 2000
(2023081006522239200_c32) 1982; 76
(2023081006522239200_c19) 2018; 122
(2023081006522239200_c43) 1989; 164
(2023081006522239200_c51) 1999; 111
2023081006522239200_c37
(2023081006522239200_c53) 1993; 98
(2023081006522239200_c40) 1993; 14
(2023081006522239200_c34) 1989; 90
(2023081006522239200_c7) 1987; 111
References_xml – volume: 157
  start-page: 479
  year: 1989
  ident: c33
  publication-title: Chem. Phys. Lett.
– volume: 96
  start-page: 6796
  year: 1992
  ident: c35
  publication-title: J. Chem. Phys.
– volume: 515
  start-page: 679
  year: 2018
  ident: c20
  publication-title: Chem. Phys.
– volume: 46
  start-page: 618
  year: 1934
  ident: c31
  publication-title: Phys. Rev.
– volume: 109
  start-page: 251
  year: 2003
  ident: c25
  publication-title: Theor. Chem. Acc.
– volume: 76
  start-page: 1910
  year: 1982
  ident: c32
  publication-title: J. Chem. Phys.
– volume: 90
  start-page: 1007
  year: 1989
  ident: c34
  publication-title: J. Chem. Phys.
– volume: 93
  start-page: 3345
  year: 1990
  ident: c48
  publication-title: J. Chem. Phys.
– volume: 44
  start-page: 409
  year: 1992
  ident: c30
  publication-title: Int. J. Quantum Chem., Quantum Chem. Symp.
– volume: 52
  start-page: 23
  year: 1994
  ident: c41
  publication-title: Int. J. Quantum Chem.
– volume: 155
  start-page: 054304
  year: 2021
  ident: c3
  publication-title: J. Chem. Phys.
– volume: 1
  start-page: 57
  year: 1984
  ident: c39
  publication-title: Comput. Phys. Rep.
– volume: 26
  start-page: 255
  year: 1984
  ident: c42
  publication-title: Int. J. Quantum Chem.
– volume: 42
  start-page: 113
  year: 1997
  ident: c23
  publication-title: J. Phys. D: At., Mol. Clusters
– volume: 98
  start-page: 7059
  year: 1993
  ident: c53
  publication-title: J. Chem. Phys.
– volume: 111
  start-page: 249
  year: 1987
  ident: c7
  publication-title: Chem. Phys.
– volume: 130
  start-page: 8150
  year: 2008
  ident: c8
  publication-title: J. Am. Chem. Soc.
– volume: 165
  start-page: 73
  year: 1990
  ident: c21
  publication-title: Chem. Phys. Lett.
– volume: 5
  start-page: 367
  year: 1978
  ident: c5
  publication-title: Int. J. Quantum Chem., Quantum Biol. Symp.
– volume: 14
  start-page: 13
  year: 1993
  ident: c40
  publication-title: J. Comput. Chem.
– volume: 103
  start-page: 7429
  year: 1995
  ident: c47
  publication-title: J. Chem. Phys.
– volume: 62
  start-page: 1344
  year: 1965
  ident: c29
  publication-title: J. Chim. Phys.
– volume: 146
  start-page: 244307
  year: 2017
  ident: c38
  publication-title: J. Chem. Phys.
– volume: 164
  start-page: 57
  year: 1989
  ident: c43
  publication-title: Chem. Phys. Lett.
– volume: 149
  start-page: 074306
  year: 2018
  ident: c16
  publication-title: J. Chem. Phys.
– volume: 55
  start-page: 127
  year: 2004
  ident: c14
  publication-title: Annu. Rev. Phys. Chem.
– volume: 93
  start-page: 3333
  year: 1990
  ident: c49
  publication-title: J. Chem. Phys.
– volume: 119
  start-page: 238
  year: 2015
  ident: c10
  publication-title: J. Phys. Chem. B
– volume: 37a
  start-page: 1378
  year: 1982
  ident: c28
  publication-title: Z. Naturforsch.
– volume: 102
  start-page: 1681
  year: 1995
  ident: c45
  publication-title: J. Chem. Phys.
– volume: 97
  start-page: 3199
  year: 1992
  ident: c22
  publication-title: J. Chem. Phys.
– volume: 44
  start-page: 2093
  year: 1979
  ident: c6
  publication-title: J. Org. Chem.
– volume: 18
  start-page: 3950
  year: 2020
  ident: c2
  publication-title: Org. Biomol. Chem.
– volume: 29
  start-page: 2173
  year: 1973
  ident: c4
  publication-title: Tetrahedron
– volume: 57
  start-page: 59
  year: 1984
  ident: c11
  publication-title: Adv. Chem. Phys.
– volume: 153
  start-page: 164307
  year: 2020
  ident: c17
  publication-title: J. Chem. Phys.
– volume: 103
  start-page: 1064
  year: 1995
  ident: c44
  publication-title: J. Chem. Phys.
– volume: 28
  start-page: 1217
  year: 1983
  ident: c50
  publication-title: Phys. Rev. A
– volume: 324
  start-page: 1
  year: 2000
  ident: c24
  publication-title: Phys. Rep.
– volume: 30
  start-page: 2678
  year: 2019
  ident: c9
  publication-title: J. Am. Soc. Mass Spectrom.
– volume: 59
  start-page: 433
  year: 2008
  ident: c46
  publication-title: Annu. Rev. Phys. Chem.
– volume: 96
  start-page: 6104
  year: 1992
  ident: c52
  publication-title: J. Chem. Phys.
– volume: 109
  start-page: 1025
  year: 1998
  ident: c15
  publication-title: J. Chem. Phys.
– volume: 122
  start-page: 8612
  year: 2018
  ident: c19
  publication-title: J. Phys. Chem. A
– volume: 1155
  start-page: 109
  year: 2019
  ident: c18
  publication-title: Comput. Theor. Chem.
– volume: 111
  start-page: 8785
  year: 1999
  ident: c51
  publication-title: J. Chem. Phys.
– volume: 515
  start-page: 679
  year: 2018
  ident: 2023081006522239200_c20
  publication-title: Chem. Phys.
  doi: 10.1016/j.chemphys.2018.07.017
– volume: 102
  start-page: 1681
  year: 1995
  ident: 2023081006522239200_c45
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.468900
– volume: 1
  start-page: 57
  year: 1984
  ident: 2023081006522239200_c39
  publication-title: Comput. Phys. Rep.
  doi: 10.1016/0167-7977(84)90002-9
– volume: 165
  start-page: 73
  year: 1990
  ident: 2023081006522239200_c21
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/0009-2614(90)87014-i
– volume: 28
  start-page: 1217
  year: 1983
  ident: 2023081006522239200_c50
  publication-title: Phys. Rev. A
  doi: 10.1103/physreva.28.1217
– start-page: 1
  volume-title: Comprehensive Heterocyclic Chemistry, Five-Membered Rings with Two or More Nitrogen Atoms
  year: 1984
  ident: 2023081006522239200_c1
  article-title: Structure of five-membered rings with two or more heteroatoms
– volume: 57
  start-page: 59
  year: 1984
  ident: 2023081006522239200_c11
  publication-title: Adv. Chem. Phys.
  doi: 10.1002/9780470142813
– volume: 42
  start-page: 113
  year: 1997
  ident: 2023081006522239200_c23
  publication-title: J. Phys. D: At., Mol. Clusters
  doi: 10.1007/s004600050342
– volume: 153
  start-page: 164307
  year: 2020
  ident: 2023081006522239200_c17
  publication-title: J. Chem. Phys.
  doi: 10.1063/5.0024446
– volume: 103
  start-page: 7429
  year: 1995
  ident: 2023081006522239200_c47
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.470315
– volume: 98
  start-page: 7059
  year: 1993
  ident: 2023081006522239200_c53
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.464749
– start-page: 323
  volume-title: Conical Intersections
  year: 2004
  ident: 2023081006522239200_c12
  article-title: The multi-mode vibronic-coupling approach
  doi: 10.1142/5406
– volume: 14
  start-page: 13
  year: 1993
  ident: 2023081006522239200_c40
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.540140105
– volume: 1155
  start-page: 109
  year: 2019
  ident: 2023081006522239200_c18
  publication-title: Comput. Theor. Chem.
  doi: 10.1016/j.comptc.2019.03.010
– volume: 103
  start-page: 1064
  year: 1995
  ident: 2023081006522239200_c44
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.469817
– year: 2000
  ident: 2023081006522239200_c26
– volume: 97
  start-page: 3199
  year: 1992
  ident: 2023081006522239200_c22
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.463007
– volume: 157
  start-page: 479
  year: 1989
  ident: 2023081006522239200_c33
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/s0009-2614(89)87395-6
– volume: 146
  start-page: 244307
  year: 2017
  ident: 2023081006522239200_c38
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4986405
– volume: 164
  start-page: 57
  year: 1989
  ident: 2023081006522239200_c43
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/0009-2614(89)85202-9
– volume: 122
  start-page: 8612
  year: 2018
  ident: 2023081006522239200_c19
  publication-title: J. Phys. Chem. A
  doi: 10.1021/acs.jpca.8b08171
– volume: 155
  start-page: 054304
  year: 2021
  ident: 2023081006522239200_c3
  publication-title: J. Chem. Phys.
  doi: 10.1063/5.0058983
– volume: 111
  start-page: 249
  year: 1987
  ident: 2023081006522239200_c7
  publication-title: Chem. Phys.
  doi: 10.1016/0301-0104(87)80138-6
– volume: 109
  start-page: 251
  year: 2003
  ident: 2023081006522239200_c25
  publication-title: Theor. Chem. Acc.
  doi: 10.1007/s00214-003-0439-1
– volume: 96
  start-page: 6796
  year: 1992
  ident: 2023081006522239200_c35
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.462569
– volume: 90
  start-page: 1007
  year: 1989
  ident: 2023081006522239200_c34
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.456153
– volume: 37a
  start-page: 1378
  year: 1982
  ident: 2023081006522239200_c28
  publication-title: Z. Naturforsch.
– volume: 59
  start-page: 433
  year: 2008
  ident: 2023081006522239200_c46
  publication-title: Annu. Rev. Phys. Chem.
  doi: 10.1146/annurev.physchem.59.032607.093602
– volume: 324
  start-page: 1
  year: 2000
  ident: 2023081006522239200_c24
  publication-title: Phys. Rep.
  doi: 10.1016/S0370-1573(99)00047-2
– volume: 18
  start-page: 3950
  year: 2020
  ident: 2023081006522239200_c2
  publication-title: Org. Biomol. Chem.
  doi: 10.1039/d0ob00350f
– volume: 44
  start-page: 409
  year: 1992
  ident: 2023081006522239200_c30
  publication-title: Int. J. Quantum Chem., Quantum Chem. Symp.
  doi: 10.1002/qua.560440836
– volume: 62
  start-page: 1344
  year: 1965
  ident: 2023081006522239200_c29
  publication-title: J. Chim. Phys.
  doi: 10.1051/jcp/1965621344
– volume: 26
  start-page: 255
  year: 1984
  ident: 2023081006522239200_c42
  publication-title: Int. J. Quantum Chem.
  doi: 10.1002/qua.560260826
– volume: 96
  start-page: 6104
  year: 1992
  ident: 2023081006522239200_c52
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.462652
– volume: 29
  start-page: 2173
  year: 1973
  ident: 2023081006522239200_c4
  publication-title: Tetrahedron
  doi: 10.1016/0040-4020(73)80161-9
– volume-title: Conical Intersections: Electronic Structure, Dynamics and Spectroscopy
  year: 2004
  ident: 2023081006522239200_c13
  doi: 10.1142/5406
– volume: 30
  start-page: 2678
  year: 2019
  ident: 2023081006522239200_c9
  publication-title: J. Am. Soc. Mass Spectrom.
  doi: 10.1007/s13361-019-02337-w
– volume: 130
  start-page: 8150
  year: 2008
  ident: 2023081006522239200_c8
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja8022384
– volume: 93
  start-page: 3345
  year: 1990
  ident: 2023081006522239200_c48
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.458815
– volume: 46
  start-page: 618
  year: 1934
  ident: 2023081006522239200_c31
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.46.618
– volume: 5
  start-page: 367
  year: 1978
  ident: 2023081006522239200_c5
  publication-title: Int. J. Quantum Chem., Quantum Biol. Symp.
– volume: 119
  start-page: 238
  year: 2015
  ident: 2023081006522239200_c10
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp508053m
– volume: 44
  start-page: 2093
  year: 1979
  ident: 2023081006522239200_c6
  publication-title: J. Org. Chem.
  doi: 10.1021/jo01327a010
– volume: 55
  start-page: 127
  year: 2004
  ident: 2023081006522239200_c14
  publication-title: Annu. Rev. Phys. Chem.
  doi: 10.1146/annurev.physchem.55.091602.094335
– volume: 93
  start-page: 3333
  year: 1990
  ident: 2023081006522239200_c49
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.458814
– year: 2010
  ident: 2023081006522239200_c36
– volume-title: Molecular Vibrations
  year: 1955
  ident: 2023081006522239200_c27
– volume: 149
  start-page: 074306
  year: 2018
  ident: 2023081006522239200_c16
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.5033425
– volume: 52
  start-page: 23
  year: 1994
  ident: 2023081006522239200_c41
  publication-title: Int. J. Quantum Chem.
  doi: 10.1002/qua.560520806
– ident: 2023081006522239200_c37
– volume: 111
  start-page: 8785
  year: 1999
  ident: 2023081006522239200_c51
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.479673
– volume: 76
  start-page: 1910
  year: 1982
  ident: 2023081006522239200_c32
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.443164
– volume: 109
  start-page: 1025
  year: 1998
  ident: 2023081006522239200_c15
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.476645
SSID ssj0001724
Score 2.4332929
Snippet Vibronic interactions in the ground and two excited states of the imidazole radical cation, X2A″ (π−1), A2A′ (nσ−1), and B2A″ (π−1), and the associated nuclear...
Vibronic interactions in the ground and two excited states of the imidazole radical cation, X2A″ (π-1), A2A' (nσ-1), and B2A″ (π-1), and the associated nuclear...
SourceID proquest
crossref
scitation
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 174309
SubjectTerms Cations
Coupling (molecular)
Electron states
Electronic structure
Energy gap
Excitation
Imidazole
Ionization
Modelling
Photoelectrons
Title Vibronic coupling in the ground and excited states of the imidazole radical cation
URI http://dx.doi.org/10.1063/5.0118148
https://www.proquest.com/docview/2731542504
https://www.proquest.com/docview/2734617082
Volume 157
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLagExovCAaIwkDm8oBUJaSJY6ePYxtMwBCCbtpb5Dg2hG1J1aYV7NdzHDtOBhUavERV7Obi8-X4O_a5IPQi4KAZcwJmagz0jbAJ84CGCC8hKleERooqHSh8-JEeHJF3J_FJ51bURJfUmS8u1saV_I9U4RzIVUfJ_oNk3UXhBPwG-cIRJAzHK8n4GGzdpoKNqJazMxudopmkjtUwSVhH8odoWGUTObRoXQKK8yLnF9qzcM7NTo3oRPS9Q1CPr4o2tYBZDHFcfKqrfp9Xq0bL-KPXvlu0OS3qUq4Wp_wnt417rvHtvPiq05N8k6umcd8fve81VvaCcPrY769MgFGrV1tZX9tq9w8a2FTXRsEGycRj1JQIdRo4Zn2osbWqHbgUyEMnWQVSYrJzXk6f_du05pwNm212GqVxav96HW2EYFQEA7Sxs3f44YubuYHM2azd5rnbTFQ0euXue5m_dEbJJjAW4zzR4yfT2-iWFRTeMSi5g67Jcgtt7rb1_LbQjU9GbnfR5xY3uMUNLkoMsMAGNxhwgy1usMENrlTTweEGW9xgg5t76OjN_nT3wLO1NTwR0aD2YuCpIguBPyaxEtpuDWEKZgEXUikaqDyDlx0DO80nQSyF4moSUaJzj3HOsnAc3UeDsirlA4RlngiZgDJQY06ijGWEJzQHoqmEIEzIIXrZjljajpGuf3KW_iGZIXrmus5MtpV1nbbbYU_tx7hIgYXDS-h8fEP01DXDCOv9L17Katn0Ibr-QBIO0XMnrr_daE2vVTXveqSzXD28yjM_Qje7L2QbDer5Uj4GNltnTywIfwEWDZy_
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Vibronic+coupling+in+the+ground+and+excited+states+of+the+imidazole+radical+cation&rft.jtitle=The+Journal+of+chemical+physics&rft.au=Trofimov%2C+A.+B.&rft.au=Skitnevskaya%2C+A.+D.&rft.au=Grigoricheva%2C+E.+K.&rft.au=Gromov%2C+E.+V.&rft.date=2022-11-07&rft.issn=0021-9606&rft.eissn=1089-7690&rft.volume=157&rft.issue=17&rft_id=info:doi/10.1063%2F5.0118148&rft.externalDBID=n%2Fa&rft.externalDocID=10_1063_5_0118148
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9606&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9606&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9606&client=summon