Vibronic coupling in the ground and excited states of the imidazole radical cation
Vibronic interactions in the ground and two excited states of the imidazole radical cation, X2A″ (π−1), A2A′ (nσ−1), and B2A″ (π−1), and the associated nuclear dynamics were studied theoretically. The results were used to interpret the recent photoelectron measurements [M. Patanen et al., J. Chem. P...
Saved in:
Published in | The Journal of chemical physics Vol. 157; no. 17; pp. 174309 - 174324 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Melville
American Institute of Physics
07.11.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 0021-9606 1089-7690 1089-7690 |
DOI | 10.1063/5.0118148 |
Cover
Loading…
Abstract | Vibronic interactions in the ground and two excited states of the imidazole radical cation, X2A″ (π−1), A2A′ (nσ−1), and B2A″ (π−1), and the associated nuclear dynamics were studied theoretically. The results were used to interpret the recent photoelectron measurements [M. Patanen et al., J. Chem. Phys. 155, 054304 (2021)]. The present high-level electronic structure calculations employing, in particular, the single, double, and triple excitations and equation-of-motion coupled-cluster method accounting for single and double excitation approaches and complete basis set extrapolation technique for the evaluation of the vertical ionization energies of imidazole indicate that the A 2A′ and B 2A″ states are very close in energy and subject to non-adiabatic effects. Our modeling confirms the existence of pronounced vibronic coupling of the A 2A′ and B 2A″ states. Moreover, despite the large energy gap of nearly 1.3 eV, the ground state X 2A″ is efficiently coupled to the A 2A′ state. The modeling was performed within the framework of the three-state linear vibronic coupling problem employing Hamiltonians expressed in a basis of diabatic electronic states and parameters derived from ab initio calculations. The ionization spectrum was computed using the multi-configuration time-dependent Hartree method. The calculated spectrum is in good agreement with the experimental data, allowing for some interpretation of the observed features to be proposed. |
---|---|
AbstractList | Vibronic interactions in the ground and two excited states of the imidazole radical cation, X2A″ (π−1), A2A′ (nσ−1), and B2A″ (π−1), and the associated nuclear dynamics were studied theoretically. The results were used to interpret the recent photoelectron measurements [M. Patanen et al., J. Chem. Phys. 155, 054304 (2021)]. The present high-level electronic structure calculations employing, in particular, the single, double, and triple excitations and equation-of-motion coupled-cluster method accounting for single and double excitation approaches and complete basis set extrapolation technique for the evaluation of the vertical ionization energies of imidazole indicate that the A 2A′ and B 2A″ states are very close in energy and subject to non-adiabatic effects. Our modeling confirms the existence of pronounced vibronic coupling of the A 2A′ and B 2A″ states. Moreover, despite the large energy gap of nearly 1.3 eV, the ground state X 2A″ is efficiently coupled to the A 2A′ state. The modeling was performed within the framework of the three-state linear vibronic coupling problem employing Hamiltonians expressed in a basis of diabatic electronic states and parameters derived from ab initio calculations. The ionization spectrum was computed using the multi-configuration time-dependent Hartree method. The calculated spectrum is in good agreement with the experimental data, allowing for some interpretation of the observed features to be proposed. Vibronic interactions in the ground and two excited states of the imidazole radical cation, X2A″ (π−1), A2A′ (nσ−1), and B2A″ (π−1), and the associated nuclear dynamics were studied theoretically. The results were used to interpret the recent photoelectron measurements [M. Patanen et al., J. Chem. Phys. 155, 054304 (2021)]. The present high-level electronic structure calculations employing, in particular, the single, double, and triple excitations and equation-of-motion coupled-cluster method accounting for single and double excitation approaches and complete basis set extrapolation technique for the evaluation of the vertical ionization energies of imidazole indicate that the A 2A′ and B 2A″ states are very close in energy and subject to non-adiabatic effects. Our modeling confirms the existence of pronounced vibronic coupling of the A 2A′ and B 2A″ states. Moreover, despite the large energy gap of nearly 1.3 eV, the ground state X 2A″ is efficiently coupled to the A 2A′ state. The modeling was performed within the framework of the three-state linear vibronic coupling problem employing Hamiltonians expressed in a basis of diabatic electronic states and parameters derived from ab initio calculations. The ionization spectrum was computed using the multi-configuration time-dependent Hartree method. The calculated spectrum is in good agreement with the experimental data, allowing for some interpretation of the observed features to be proposed. Vibronic interactions in the ground and two excited states of the imidazole radical cation, X2A″ (π-1), A2A' (nσ-1), and B2A″ (π-1), and the associated nuclear dynamics were studied theoretically. The results were used to interpret the recent photoelectron measurements [M. Patanen et al., J. Chem. Phys. 155, 054304 (2021)]. The present high-level electronic structure calculations employing, in particular, the single, double, and triple excitations and equation-of-motion coupled-cluster method accounting for single and double excitation approaches and complete basis set extrapolation technique for the evaluation of the vertical ionization energies of imidazole indicate that the A 2A' and B 2A″ states are very close in energy and subject to non-adiabatic effects. Our modeling confirms the existence of pronounced vibronic coupling of the A 2A' and B 2A″ states. Moreover, despite the large energy gap of nearly 1.3 eV, the ground state X 2A″ is efficiently coupled to the A 2A' state. The modeling was performed within the framework of the three-state linear vibronic coupling problem employing Hamiltonians expressed in a basis of diabatic electronic states and parameters derived from ab initio calculations. The ionization spectrum was computed using the multi-configuration time-dependent Hartree method. The calculated spectrum is in good agreement with the experimental data, allowing for some interpretation of the observed features to be proposed.Vibronic interactions in the ground and two excited states of the imidazole radical cation, X2A″ (π-1), A2A' (nσ-1), and B2A″ (π-1), and the associated nuclear dynamics were studied theoretically. The results were used to interpret the recent photoelectron measurements [M. Patanen et al., J. Chem. Phys. 155, 054304 (2021)]. The present high-level electronic structure calculations employing, in particular, the single, double, and triple excitations and equation-of-motion coupled-cluster method accounting for single and double excitation approaches and complete basis set extrapolation technique for the evaluation of the vertical ionization energies of imidazole indicate that the A 2A' and B 2A″ states are very close in energy and subject to non-adiabatic effects. Our modeling confirms the existence of pronounced vibronic coupling of the A 2A' and B 2A″ states. Moreover, despite the large energy gap of nearly 1.3 eV, the ground state X 2A″ is efficiently coupled to the A 2A' state. The modeling was performed within the framework of the three-state linear vibronic coupling problem employing Hamiltonians expressed in a basis of diabatic electronic states and parameters derived from ab initio calculations. The ionization spectrum was computed using the multi-configuration time-dependent Hartree method. The calculated spectrum is in good agreement with the experimental data, allowing for some interpretation of the observed features to be proposed. |
Author | Köppel, H. Trofimov, A. B. Grigoricheva, E. K. Skitnevskaya, A. D. Gromov, E. V. |
Author_xml | – sequence: 1 givenname: A. B. surname: Trofimov fullname: Trofimov, A. B. organization: 4Max-Planck Institute for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany – sequence: 2 givenname: A. D. surname: Skitnevskaya fullname: Skitnevskaya, A. D. organization: 4Max-Planck Institute for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany – sequence: 3 givenname: E. K. surname: Grigoricheva fullname: Grigoricheva, E. K. organization: 4Max-Planck Institute for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany – sequence: 4 givenname: E. V. surname: Gromov fullname: Gromov, E. V. organization: 4Max-Planck Institute for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany – sequence: 5 givenname: H. surname: Köppel fullname: Köppel, H. organization: Theoretische Chemie, Physikalisch-Chemisches Institut, Universität Heidelberg |
BookMark | eNp90MtKAzEUBuAgFWyrC98g4EaFaU9mkrkspXiDgiDqNmQySU2ZJjWZEfXpnV5UqOIiZPOdPzn_APWsswqhYwIjAmkyZiMgJCc030N9AnkRZWkBPdQHiElUpJAeoEEIcwAgWUz76P7JlN5ZI7F07bI2doaNxc2zwjPvWlth0R31Jk2jKhwa0aiAnV4DszCV-HC1wl5URooaS9EYZw_RvhZ1UEfbe4gery4fJjfR9O76dnIxjWSSQhOxvEhkGWc0yZmWhNE8VkJmIKTSOgVdld0ahOW0KoApqYUukpQSKBIhsjImyRCdbnKX3r20KjR8YYJUdS2scm3gcZbQlGSQxx092aFz13rb_W6lurdjBrRTZxslvQvBK82X3iyEf-cE-Kpdzvi23c6Od2xX0Xr9xgtT_zlxvpkIX_I7_tX5H8iXlf4P_07-BMrimG0 |
CODEN | JCPSA6 |
CitedBy_id | crossref_primary_10_1063_5_0128764 crossref_primary_10_1039_D3CP01031G crossref_primary_10_1063_5_0190034 crossref_primary_10_1063_5_0215910 |
Cites_doi | 10.1016/j.chemphys.2018.07.017 10.1063/1.468900 10.1016/0167-7977(84)90002-9 10.1016/0009-2614(90)87014-i 10.1103/physreva.28.1217 10.1002/9780470142813 10.1007/s004600050342 10.1063/5.0024446 10.1063/1.470315 10.1063/1.464749 10.1142/5406 10.1002/jcc.540140105 10.1016/j.comptc.2019.03.010 10.1063/1.469817 10.1063/1.463007 10.1016/s0009-2614(89)87395-6 10.1063/1.4986405 10.1016/0009-2614(89)85202-9 10.1021/acs.jpca.8b08171 10.1063/5.0058983 10.1016/0301-0104(87)80138-6 10.1007/s00214-003-0439-1 10.1063/1.462569 10.1063/1.456153 10.1146/annurev.physchem.59.032607.093602 10.1016/S0370-1573(99)00047-2 10.1039/d0ob00350f 10.1002/qua.560440836 10.1051/jcp/1965621344 10.1002/qua.560260826 10.1063/1.462652 10.1016/0040-4020(73)80161-9 10.1007/s13361-019-02337-w 10.1021/ja8022384 10.1063/1.458815 10.1103/PhysRev.46.618 10.1021/jp508053m 10.1021/jo01327a010 10.1146/annurev.physchem.55.091602.094335 10.1063/1.458814 10.1063/1.5033425 10.1002/qua.560520806 10.1063/1.479673 10.1063/1.443164 10.1063/1.476645 |
ContentType | Journal Article |
Copyright | Author(s) 2022 Author(s). Published under an exclusive license by AIP Publishing. |
Copyright_xml | – notice: Author(s) – notice: 2022 Author(s). Published under an exclusive license by AIP Publishing. |
DBID | AAYXX CITATION 8FD H8D L7M 7X8 |
DOI | 10.1063/5.0118148 |
DatabaseName | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitleList | Technology Research Database MEDLINE - Academic CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Physics |
EISSN | 1089-7690 |
ExternalDocumentID | 10_1063_5_0118148 jcp |
GrantInformation_xml | – fundername: Ministry of Science and Higher Education of the Russian Federation grantid: FZZE-2020-0025 funderid: https://doi.org/10.13039/501100012190 |
GroupedDBID | --- -DZ -ET -~X 123 1UP 2-P 29K 4.4 53G 5VS 85S AAAAW AABDS AAEUA AAPUP AAYIH ABPPZ ABZEH ACBRY ACLYJ ACNCT ACZLF ADCTM AEJMO AENEX AFATG AFHCQ AGKCL AGLKD AGMXG AGTJO AHSDT AJJCW AJQPL ALEPV ALMA_UNASSIGNED_HOLDINGS AQWKA ATXIE AWQPM BPZLN CS3 D-I DU5 EBS ESX F5P FDOHQ FFFMQ HAM M6X M71 M73 N9A NPSNA O-B P2P RIP RNS RQS TN5 TWZ UPT WH7 YQT YZZ ~02 AAGWI AAYXX ABJGX ADMLS BDMKI CITATION 8FD H8D L7M 7X8 |
ID | FETCH-LOGICAL-c360t-5893cb274385fc15482eac70aceff60fdb8141584d905ecfaf93641093aa7b213 |
ISSN | 0021-9606 1089-7690 |
IngestDate | Fri Jul 11 16:34:06 EDT 2025 Mon Jun 30 05:18:22 EDT 2025 Tue Jul 01 01:12:24 EDT 2025 Thu Apr 24 23:10:14 EDT 2025 Fri Jun 21 00:30:03 EDT 2024 Tue Jul 04 19:18:19 EDT 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 17 |
Language | English |
License | Published under an exclusive license by AIP Publishing. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c360t-5893cb274385fc15482eac70aceff60fdb8141584d905ecfaf93641093aa7b213 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-1176-026X 0000-0002-6534-7553 0000-0002-9328-1598 0000-0003-4095-5357 0000-0003-3523-7086 |
PQID | 2731542504 |
PQPubID | 2050685 |
PageCount | 16 |
ParticipantIDs | scitation_primary_10_1063_5_0118148 proquest_journals_2731542504 proquest_miscellaneous_2734617082 crossref_primary_10_1063_5_0118148 crossref_citationtrail_10_1063_5_0118148 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20221107 2022-11-07 |
PublicationDateYYYYMMDD | 2022-11-07 |
PublicationDate_xml | – month: 11 year: 2022 text: 20221107 day: 07 |
PublicationDecade | 2020 |
PublicationPlace | Melville |
PublicationPlace_xml | – name: Melville |
PublicationTitle | The Journal of chemical physics |
PublicationYear | 2022 |
Publisher | American Institute of Physics |
Publisher_xml | – name: American Institute of Physics |
References | Sarkar, Baishya, Mahapatra (c20) 2018; 515 Zakrzewski, von Niessen (c40) 1993; 14 Trofimov, Holland, Powis, Menzies, Potts, Karlsson, Gromov, Badsyuk, Schirmer (c38) 2017; 146 Shabalin, Camp (c2) 2020; 18 Perchard, Bellocq, Novak (c29) 1965; 62 Koch, Jensen, Jørgensen, Helgaker (c48) 1990; 93 Raghavachari, Trucks, Pople, Head-Gordon (c33) 1989; 157 Purvis, Bartlett (c32) 1982; 76 Cradock, Findlay, Palmer (c4) 1973; 29 Trofimov, Skitnevskaya, Grigoricheva, Gromov, Köppel (c17) 2020; 153 Møller, Plesset (c31) 1934; 46 Rajak, Ghosh, Mahapatra (c19) 2018; 122 Dalgaard, Monkhorst (c50) 1983; 28 Koch, Jørgensen (c49) 1990; 93 Sadlej, Edwards (c30) 1992; 44 Nooijen, Snijders (c45) 1995; 102 Christiansen, Koch, Jørgensen (c47) 1995; 103 Beck, Meyer (c23) 1997; 42 Dunning (c34) 1989; 90 Klasinc, Ruščić, Kajfež, Šunjić (c5) 1978; 5 Meißner, Feketeová, Ribar, Fink, Limão-Vieira, Denifl (c9) 2019; 30 Geertsen, Rittby, Bartlett (c43) 1989; 164 Meyer, Worth (c25) 2003; 109 Trofimov, Powis, Menzies, Holland, Antonsson, Patanen, Nicolas, Miron, Skitnevskaya, Gromov, Köppel (c16) 2018; 149 Zakrzewski, Ortiz (c41) 1994; 52 Feller (c53) 1993; 98 Tentscher, Seidel, Winter, Guerard, Arey (c10) 2015; 119 Stanton, Gauss (c44) 1995; 103 Meyer, Manthe, Cederbaum (c21) 1990; 165 Palmer, Beveridge (c7) 1987; 111 Ghosh, Rajak, Kanakati, Mahapatra (c18) 2019; 1155 Trofimov, Köppel, Schirmer (c15) 1998; 109 Manthe, Meyer, Cederbaum (c22) 1992; 97 Stanton, Gauss (c51) 1999; 111 Kendall, Dunning, Harrison (c35) 1992; 96 Feller (c52) 1992; 96 Patanen, Abid, Pratt, Kivimäki, Trofimov, Skitnevskaya, Grigoricheva, Gromov, Powis, Holland (c3) 2021; 155 Christen, Griffiths, Sheridan (c28) 1982; 37a Ramsey (c6) 1979; 44 Nolting, Ottosson, Faubel, Hertel, Winter (c8) 2008; 130 Beck, Jäckle, Worth, Meyer (c24) 2000; 324 Sekino, Bartlett (c42) 1984; 26 von Niessen, Schirmer, Cederbaum (c39) 1984; 1 Köppel, Domcke, Cederbaum (c11) 1984; 57 Worth, Cederbaum (c14) 2004; 55 Krylov (c46) 2008; 59 (2023081006522239200_c36) 2010 (2023081006522239200_c47) 1995; 103 (2023081006522239200_c41) 1994; 52 (2023081006522239200_c16) 2018; 149 (2023081006522239200_c5) 1978; 5 (2023081006522239200_c21) 1990; 165 (2023081006522239200_c38) 2017; 146 (2023081006522239200_c49) 1990; 93 (2023081006522239200_c3) 2021; 155 (2023081006522239200_c18) 2019; 1155 Domcke (2023081006522239200_c13) 2004 (2023081006522239200_c42) 1984; 26 (2023081006522239200_c50) 1983; 28 (2023081006522239200_c28) 1982; 37a (2023081006522239200_c10) 2015; 119 (2023081006522239200_c20) 2018; 515 (2023081006522239200_c17) 2020; 153 (2023081006522239200_c45) 1995; 102 (2023081006522239200_c11) 1984; 57 (2023081006522239200_c39) 1984; 1 (2023081006522239200_c44) 1995; 103 (2023081006522239200_c30) 1992; 44 (2023081006522239200_c27) 1955 (2023081006522239200_c52) 1992; 96 (2023081006522239200_c25) 2003; 109 (2023081006522239200_c6) 1979; 44 (2023081006522239200_c15) 1998; 109 (2023081006522239200_c31) 1934; 46 (2023081006522239200_c48) 1990; 93 (2023081006522239200_c8) 2008; 130 (2023081006522239200_c9) 2019; 30 Domcke (2023081006522239200_c12) 2004 (2023081006522239200_c24) 2000; 324 Katritzky (2023081006522239200_c1) 1984 (2023081006522239200_c33) 1989; 157 (2023081006522239200_c46) 2008; 59 (2023081006522239200_c4) 1973; 29 (2023081006522239200_c14) 2004; 55 (2023081006522239200_c29) 1965; 62 (2023081006522239200_c2) 2020; 18 (2023081006522239200_c22) 1992; 97 (2023081006522239200_c23) 1997; 42 (2023081006522239200_c35) 1992; 96 (2023081006522239200_c26) 2000 (2023081006522239200_c32) 1982; 76 (2023081006522239200_c19) 2018; 122 (2023081006522239200_c43) 1989; 164 (2023081006522239200_c51) 1999; 111 2023081006522239200_c37 (2023081006522239200_c53) 1993; 98 (2023081006522239200_c40) 1993; 14 (2023081006522239200_c34) 1989; 90 (2023081006522239200_c7) 1987; 111 |
References_xml | – volume: 157 start-page: 479 year: 1989 ident: c33 publication-title: Chem. Phys. Lett. – volume: 96 start-page: 6796 year: 1992 ident: c35 publication-title: J. Chem. Phys. – volume: 515 start-page: 679 year: 2018 ident: c20 publication-title: Chem. Phys. – volume: 46 start-page: 618 year: 1934 ident: c31 publication-title: Phys. Rev. – volume: 109 start-page: 251 year: 2003 ident: c25 publication-title: Theor. Chem. Acc. – volume: 76 start-page: 1910 year: 1982 ident: c32 publication-title: J. Chem. Phys. – volume: 90 start-page: 1007 year: 1989 ident: c34 publication-title: J. Chem. Phys. – volume: 93 start-page: 3345 year: 1990 ident: c48 publication-title: J. Chem. Phys. – volume: 44 start-page: 409 year: 1992 ident: c30 publication-title: Int. J. Quantum Chem., Quantum Chem. Symp. – volume: 52 start-page: 23 year: 1994 ident: c41 publication-title: Int. J. Quantum Chem. – volume: 155 start-page: 054304 year: 2021 ident: c3 publication-title: J. Chem. Phys. – volume: 1 start-page: 57 year: 1984 ident: c39 publication-title: Comput. Phys. Rep. – volume: 26 start-page: 255 year: 1984 ident: c42 publication-title: Int. J. Quantum Chem. – volume: 42 start-page: 113 year: 1997 ident: c23 publication-title: J. Phys. D: At., Mol. Clusters – volume: 98 start-page: 7059 year: 1993 ident: c53 publication-title: J. Chem. Phys. – volume: 111 start-page: 249 year: 1987 ident: c7 publication-title: Chem. Phys. – volume: 130 start-page: 8150 year: 2008 ident: c8 publication-title: J. Am. Chem. Soc. – volume: 165 start-page: 73 year: 1990 ident: c21 publication-title: Chem. Phys. Lett. – volume: 5 start-page: 367 year: 1978 ident: c5 publication-title: Int. J. Quantum Chem., Quantum Biol. Symp. – volume: 14 start-page: 13 year: 1993 ident: c40 publication-title: J. Comput. Chem. – volume: 103 start-page: 7429 year: 1995 ident: c47 publication-title: J. Chem. Phys. – volume: 62 start-page: 1344 year: 1965 ident: c29 publication-title: J. Chim. Phys. – volume: 146 start-page: 244307 year: 2017 ident: c38 publication-title: J. Chem. Phys. – volume: 164 start-page: 57 year: 1989 ident: c43 publication-title: Chem. Phys. Lett. – volume: 149 start-page: 074306 year: 2018 ident: c16 publication-title: J. Chem. Phys. – volume: 55 start-page: 127 year: 2004 ident: c14 publication-title: Annu. Rev. Phys. Chem. – volume: 93 start-page: 3333 year: 1990 ident: c49 publication-title: J. Chem. Phys. – volume: 119 start-page: 238 year: 2015 ident: c10 publication-title: J. Phys. Chem. B – volume: 37a start-page: 1378 year: 1982 ident: c28 publication-title: Z. Naturforsch. – volume: 102 start-page: 1681 year: 1995 ident: c45 publication-title: J. Chem. Phys. – volume: 97 start-page: 3199 year: 1992 ident: c22 publication-title: J. Chem. Phys. – volume: 44 start-page: 2093 year: 1979 ident: c6 publication-title: J. Org. Chem. – volume: 18 start-page: 3950 year: 2020 ident: c2 publication-title: Org. Biomol. Chem. – volume: 29 start-page: 2173 year: 1973 ident: c4 publication-title: Tetrahedron – volume: 57 start-page: 59 year: 1984 ident: c11 publication-title: Adv. Chem. Phys. – volume: 153 start-page: 164307 year: 2020 ident: c17 publication-title: J. Chem. Phys. – volume: 103 start-page: 1064 year: 1995 ident: c44 publication-title: J. Chem. Phys. – volume: 28 start-page: 1217 year: 1983 ident: c50 publication-title: Phys. Rev. A – volume: 324 start-page: 1 year: 2000 ident: c24 publication-title: Phys. Rep. – volume: 30 start-page: 2678 year: 2019 ident: c9 publication-title: J. Am. Soc. Mass Spectrom. – volume: 59 start-page: 433 year: 2008 ident: c46 publication-title: Annu. Rev. Phys. Chem. – volume: 96 start-page: 6104 year: 1992 ident: c52 publication-title: J. Chem. Phys. – volume: 109 start-page: 1025 year: 1998 ident: c15 publication-title: J. Chem. Phys. – volume: 122 start-page: 8612 year: 2018 ident: c19 publication-title: J. Phys. Chem. A – volume: 1155 start-page: 109 year: 2019 ident: c18 publication-title: Comput. Theor. Chem. – volume: 111 start-page: 8785 year: 1999 ident: c51 publication-title: J. Chem. Phys. – volume: 515 start-page: 679 year: 2018 ident: 2023081006522239200_c20 publication-title: Chem. Phys. doi: 10.1016/j.chemphys.2018.07.017 – volume: 102 start-page: 1681 year: 1995 ident: 2023081006522239200_c45 publication-title: J. Chem. Phys. doi: 10.1063/1.468900 – volume: 1 start-page: 57 year: 1984 ident: 2023081006522239200_c39 publication-title: Comput. Phys. Rep. doi: 10.1016/0167-7977(84)90002-9 – volume: 165 start-page: 73 year: 1990 ident: 2023081006522239200_c21 publication-title: Chem. Phys. Lett. doi: 10.1016/0009-2614(90)87014-i – volume: 28 start-page: 1217 year: 1983 ident: 2023081006522239200_c50 publication-title: Phys. Rev. A doi: 10.1103/physreva.28.1217 – start-page: 1 volume-title: Comprehensive Heterocyclic Chemistry, Five-Membered Rings with Two or More Nitrogen Atoms year: 1984 ident: 2023081006522239200_c1 article-title: Structure of five-membered rings with two or more heteroatoms – volume: 57 start-page: 59 year: 1984 ident: 2023081006522239200_c11 publication-title: Adv. Chem. Phys. doi: 10.1002/9780470142813 – volume: 42 start-page: 113 year: 1997 ident: 2023081006522239200_c23 publication-title: J. Phys. D: At., Mol. Clusters doi: 10.1007/s004600050342 – volume: 153 start-page: 164307 year: 2020 ident: 2023081006522239200_c17 publication-title: J. Chem. Phys. doi: 10.1063/5.0024446 – volume: 103 start-page: 7429 year: 1995 ident: 2023081006522239200_c47 publication-title: J. Chem. Phys. doi: 10.1063/1.470315 – volume: 98 start-page: 7059 year: 1993 ident: 2023081006522239200_c53 publication-title: J. Chem. Phys. doi: 10.1063/1.464749 – start-page: 323 volume-title: Conical Intersections year: 2004 ident: 2023081006522239200_c12 article-title: The multi-mode vibronic-coupling approach doi: 10.1142/5406 – volume: 14 start-page: 13 year: 1993 ident: 2023081006522239200_c40 publication-title: J. Comput. Chem. doi: 10.1002/jcc.540140105 – volume: 1155 start-page: 109 year: 2019 ident: 2023081006522239200_c18 publication-title: Comput. Theor. Chem. doi: 10.1016/j.comptc.2019.03.010 – volume: 103 start-page: 1064 year: 1995 ident: 2023081006522239200_c44 publication-title: J. Chem. Phys. doi: 10.1063/1.469817 – year: 2000 ident: 2023081006522239200_c26 – volume: 97 start-page: 3199 year: 1992 ident: 2023081006522239200_c22 publication-title: J. Chem. Phys. doi: 10.1063/1.463007 – volume: 157 start-page: 479 year: 1989 ident: 2023081006522239200_c33 publication-title: Chem. Phys. Lett. doi: 10.1016/s0009-2614(89)87395-6 – volume: 146 start-page: 244307 year: 2017 ident: 2023081006522239200_c38 publication-title: J. Chem. Phys. doi: 10.1063/1.4986405 – volume: 164 start-page: 57 year: 1989 ident: 2023081006522239200_c43 publication-title: Chem. Phys. Lett. doi: 10.1016/0009-2614(89)85202-9 – volume: 122 start-page: 8612 year: 2018 ident: 2023081006522239200_c19 publication-title: J. Phys. Chem. A doi: 10.1021/acs.jpca.8b08171 – volume: 155 start-page: 054304 year: 2021 ident: 2023081006522239200_c3 publication-title: J. Chem. Phys. doi: 10.1063/5.0058983 – volume: 111 start-page: 249 year: 1987 ident: 2023081006522239200_c7 publication-title: Chem. Phys. doi: 10.1016/0301-0104(87)80138-6 – volume: 109 start-page: 251 year: 2003 ident: 2023081006522239200_c25 publication-title: Theor. Chem. Acc. doi: 10.1007/s00214-003-0439-1 – volume: 96 start-page: 6796 year: 1992 ident: 2023081006522239200_c35 publication-title: J. Chem. Phys. doi: 10.1063/1.462569 – volume: 90 start-page: 1007 year: 1989 ident: 2023081006522239200_c34 publication-title: J. Chem. Phys. doi: 10.1063/1.456153 – volume: 37a start-page: 1378 year: 1982 ident: 2023081006522239200_c28 publication-title: Z. Naturforsch. – volume: 59 start-page: 433 year: 2008 ident: 2023081006522239200_c46 publication-title: Annu. Rev. Phys. Chem. doi: 10.1146/annurev.physchem.59.032607.093602 – volume: 324 start-page: 1 year: 2000 ident: 2023081006522239200_c24 publication-title: Phys. Rep. doi: 10.1016/S0370-1573(99)00047-2 – volume: 18 start-page: 3950 year: 2020 ident: 2023081006522239200_c2 publication-title: Org. Biomol. Chem. doi: 10.1039/d0ob00350f – volume: 44 start-page: 409 year: 1992 ident: 2023081006522239200_c30 publication-title: Int. J. Quantum Chem., Quantum Chem. Symp. doi: 10.1002/qua.560440836 – volume: 62 start-page: 1344 year: 1965 ident: 2023081006522239200_c29 publication-title: J. Chim. Phys. doi: 10.1051/jcp/1965621344 – volume: 26 start-page: 255 year: 1984 ident: 2023081006522239200_c42 publication-title: Int. J. Quantum Chem. doi: 10.1002/qua.560260826 – volume: 96 start-page: 6104 year: 1992 ident: 2023081006522239200_c52 publication-title: J. Chem. Phys. doi: 10.1063/1.462652 – volume: 29 start-page: 2173 year: 1973 ident: 2023081006522239200_c4 publication-title: Tetrahedron doi: 10.1016/0040-4020(73)80161-9 – volume-title: Conical Intersections: Electronic Structure, Dynamics and Spectroscopy year: 2004 ident: 2023081006522239200_c13 doi: 10.1142/5406 – volume: 30 start-page: 2678 year: 2019 ident: 2023081006522239200_c9 publication-title: J. Am. Soc. Mass Spectrom. doi: 10.1007/s13361-019-02337-w – volume: 130 start-page: 8150 year: 2008 ident: 2023081006522239200_c8 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja8022384 – volume: 93 start-page: 3345 year: 1990 ident: 2023081006522239200_c48 publication-title: J. Chem. Phys. doi: 10.1063/1.458815 – volume: 46 start-page: 618 year: 1934 ident: 2023081006522239200_c31 publication-title: Phys. Rev. doi: 10.1103/PhysRev.46.618 – volume: 5 start-page: 367 year: 1978 ident: 2023081006522239200_c5 publication-title: Int. J. Quantum Chem., Quantum Biol. Symp. – volume: 119 start-page: 238 year: 2015 ident: 2023081006522239200_c10 publication-title: J. Phys. Chem. B doi: 10.1021/jp508053m – volume: 44 start-page: 2093 year: 1979 ident: 2023081006522239200_c6 publication-title: J. Org. Chem. doi: 10.1021/jo01327a010 – volume: 55 start-page: 127 year: 2004 ident: 2023081006522239200_c14 publication-title: Annu. Rev. Phys. Chem. doi: 10.1146/annurev.physchem.55.091602.094335 – volume: 93 start-page: 3333 year: 1990 ident: 2023081006522239200_c49 publication-title: J. Chem. Phys. doi: 10.1063/1.458814 – year: 2010 ident: 2023081006522239200_c36 – volume-title: Molecular Vibrations year: 1955 ident: 2023081006522239200_c27 – volume: 149 start-page: 074306 year: 2018 ident: 2023081006522239200_c16 publication-title: J. Chem. Phys. doi: 10.1063/1.5033425 – volume: 52 start-page: 23 year: 1994 ident: 2023081006522239200_c41 publication-title: Int. J. Quantum Chem. doi: 10.1002/qua.560520806 – ident: 2023081006522239200_c37 – volume: 111 start-page: 8785 year: 1999 ident: 2023081006522239200_c51 publication-title: J. Chem. Phys. doi: 10.1063/1.479673 – volume: 76 start-page: 1910 year: 1982 ident: 2023081006522239200_c32 publication-title: J. Chem. Phys. doi: 10.1063/1.443164 – volume: 109 start-page: 1025 year: 1998 ident: 2023081006522239200_c15 publication-title: J. Chem. Phys. doi: 10.1063/1.476645 |
SSID | ssj0001724 |
Score | 2.4332929 |
Snippet | Vibronic interactions in the ground and two excited states of the imidazole radical cation, X2A″ (π−1), A2A′ (nσ−1), and B2A″ (π−1), and the associated nuclear... Vibronic interactions in the ground and two excited states of the imidazole radical cation, X2A″ (π-1), A2A' (nσ-1), and B2A″ (π-1), and the associated nuclear... |
SourceID | proquest crossref scitation |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 174309 |
SubjectTerms | Cations Coupling (molecular) Electron states Electronic structure Energy gap Excitation Imidazole Ionization Modelling Photoelectrons |
Title | Vibronic coupling in the ground and excited states of the imidazole radical cation |
URI | http://dx.doi.org/10.1063/5.0118148 https://www.proquest.com/docview/2731542504 https://www.proquest.com/docview/2734617082 |
Volume | 157 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLagExovCAaIwkDm8oBUJaSJY6ePYxtMwBCCbtpb5Dg2hG1J1aYV7NdzHDtOBhUavERV7Obi8-X4O_a5IPQi4KAZcwJmagz0jbAJ84CGCC8hKleERooqHSh8-JEeHJF3J_FJ51bURJfUmS8u1saV_I9U4RzIVUfJ_oNk3UXhBPwG-cIRJAzHK8n4GGzdpoKNqJazMxudopmkjtUwSVhH8odoWGUTObRoXQKK8yLnF9qzcM7NTo3oRPS9Q1CPr4o2tYBZDHFcfKqrfp9Xq0bL-KPXvlu0OS3qUq4Wp_wnt417rvHtvPiq05N8k6umcd8fve81VvaCcPrY769MgFGrV1tZX9tq9w8a2FTXRsEGycRj1JQIdRo4Zn2osbWqHbgUyEMnWQVSYrJzXk6f_du05pwNm212GqVxav96HW2EYFQEA7Sxs3f44YubuYHM2azd5rnbTFQ0euXue5m_dEbJJjAW4zzR4yfT2-iWFRTeMSi5g67Jcgtt7rb1_LbQjU9GbnfR5xY3uMUNLkoMsMAGNxhwgy1usMENrlTTweEGW9xgg5t76OjN_nT3wLO1NTwR0aD2YuCpIguBPyaxEtpuDWEKZgEXUikaqDyDlx0DO80nQSyF4moSUaJzj3HOsnAc3UeDsirlA4RlngiZgDJQY06ijGWEJzQHoqmEIEzIIXrZjljajpGuf3KW_iGZIXrmus5MtpV1nbbbYU_tx7hIgYXDS-h8fEP01DXDCOv9L17Katn0Ibr-QBIO0XMnrr_daE2vVTXveqSzXD28yjM_Qje7L2QbDer5Uj4GNltnTywIfwEWDZy_ |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Vibronic+coupling+in+the+ground+and+excited+states+of+the+imidazole+radical+cation&rft.jtitle=The+Journal+of+chemical+physics&rft.au=Trofimov%2C+A.+B.&rft.au=Skitnevskaya%2C+A.+D.&rft.au=Grigoricheva%2C+E.+K.&rft.au=Gromov%2C+E.+V.&rft.date=2022-11-07&rft.issn=0021-9606&rft.eissn=1089-7690&rft.volume=157&rft.issue=17&rft_id=info:doi/10.1063%2F5.0118148&rft.externalDBID=n%2Fa&rft.externalDocID=10_1063_5_0118148 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9606&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9606&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9606&client=summon |