Vibronic coupling in the ground and excited states of the imidazole radical cation
Vibronic interactions in the ground and two excited states of the imidazole radical cation, X2A″ (π−1), A2A′ (nσ−1), and B2A″ (π−1), and the associated nuclear dynamics were studied theoretically. The results were used to interpret the recent photoelectron measurements [M. Patanen et al., J. Chem. P...
Saved in:
Published in | The Journal of chemical physics Vol. 157; no. 17; pp. 174309 - 174324 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Melville
American Institute of Physics
07.11.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Vibronic interactions in the ground and two excited states of the imidazole radical cation, X2A″ (π−1), A2A′ (nσ−1), and B2A″ (π−1), and the associated nuclear dynamics were studied theoretically. The results were used to interpret the recent photoelectron measurements [M. Patanen et al., J. Chem. Phys. 155, 054304 (2021)]. The present high-level electronic structure calculations employing, in particular, the single, double, and triple excitations and equation-of-motion coupled-cluster method accounting for single and double excitation approaches and complete basis set extrapolation technique for the evaluation of the vertical ionization energies of imidazole indicate that the A 2A′ and B 2A″ states are very close in energy and subject to non-adiabatic effects. Our modeling confirms the existence of pronounced vibronic coupling of the A 2A′ and B 2A″ states. Moreover, despite the large energy gap of nearly 1.3 eV, the ground state X 2A″ is efficiently coupled to the A 2A′ state. The modeling was performed within the framework of the three-state linear vibronic coupling problem employing Hamiltonians expressed in a basis of diabatic electronic states and parameters derived from ab initio calculations. The ionization spectrum was computed using the multi-configuration time-dependent Hartree method. The calculated spectrum is in good agreement with the experimental data, allowing for some interpretation of the observed features to be proposed. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 0021-9606 1089-7690 1089-7690 |
DOI: | 10.1063/5.0118148 |