Globally Guided Deep V-Network-Based Motion Planning Algorithm for Fixed-Wing Unmanned Aerial Vehicles
Fixed-wing UAVs have shown great potential in both military and civilian applications. However, achieving safe and collision-free flight in complex obstacle environments is still a challenging problem. This paper proposed a hierarchical two-layer fixed-wing UAV motion planning algorithm based on a g...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 24; no. 12; p. 3984 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
19.06.2024
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Fixed-wing UAVs have shown great potential in both military and civilian applications. However, achieving safe and collision-free flight in complex obstacle environments is still a challenging problem. This paper proposed a hierarchical two-layer fixed-wing UAV motion planning algorithm based on a global planner and a local reinforcement learning (RL) planner in the presence of static obstacles and other UAVs. Considering the kinematic constraints, a global planner is designed to provide reference guidance for ego-UAV with respect to static obstacles. On this basis, a local RL planner is designed to accomplish kino-dynamic feasible and collision-free motion planning that incorporates dynamic obstacles within the sensing range. Finally, in the simulation training phase, a multi-stage, multi-scenario training strategy is adopted, and the simulation experimental results show that the performance of the proposed algorithm is significantly better than that of the baseline method. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1424-8220 1424-8220 |
DOI: | 10.3390/s24123984 |