EVALUATION OF RGB VEGETATION INDICES DERIVED FROM UAV IMAGES FOR RICE CROP GROWTH MONITORING

The unmanned aerial vehicles (UAVs) are widely used for agricultural monitoring due to reduce the cost and time of crop monitoring via the acquisition of images with high spatial-temporal resolution. The normalized difference vegetation index (NDVI) is the most widely studied and used for mapping cr...

Full description

Saved in:
Bibliographic Details
Published inISPRS annals of the photogrammetry, remote sensing and spatial information sciences Vol. X-4/W1-2022; pp. 385 - 390
Main Authors Kazemi, F., Ghanbari Parmehr, E.
Format Journal Article
LanguageEnglish
Published Gottingen Copernicus GmbH 01.01.2023
Copernicus Publications
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The unmanned aerial vehicles (UAVs) are widely used for agricultural monitoring due to reduce the cost and time of crop monitoring via the acquisition of images with high spatial-temporal resolution. The normalized difference vegetation index (NDVI) is the most widely studied and used for mapping crop growth. A relatively expensive multispectral sensor is required to produce an NDVI map. The visible vegetation indices (VIs) derived from UAV images showed potential capabilities for predicting crop growth. The purpose of this paper is to evaluate the RGB indices to monitor the growth of the rice crop. The images were obtained from the study area by DJI PM4 multispectral UAV. The multispectral images were used to calculate NDVI as a reference vegetation index and different RGB indices were implemented and compared with the reference index. The results showed that RGB indices can be used as the vegetation index in the case of unavailable multispectral images.
ISSN:2194-9050
2194-9042
2194-9050
DOI:10.5194/isprs-annals-X-4-W1-2022-385-2023