Avoiding Spurious Retransmission over Flooding-Based Routing Protocol for Underwater Sensor Networks

In underwater wireless sensor networks (UWSN), acoustic communication naturally introduces challenges such as long propagation delay and high packet loss. The flooding-based routing protocol can address these challenges with its multipath characteristics. As in flooding-based routing, due to multipa...

Full description

Saved in:
Bibliographic Details
Published inWireless communications and mobile computing Vol. 2020; no. 2020; pp. 1 - 9
Main Authors Seo, Junho, Khan, Muhammad Toaha Raza, Bae, Yeongjoon, Lee, Sungwon, Kim, Dongkyun
Format Journal Article
LanguageEnglish
Published Cairo, Egypt Hindawi Publishing Corporation 2020
Hindawi
Hindawi Limited
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In underwater wireless sensor networks (UWSN), acoustic communication naturally introduces challenges such as long propagation delay and high packet loss. The flooding-based routing protocol can address these challenges with its multipath characteristics. As in flooding-based routing, due to multipath propagation mechanism, not only DATA but also ACK messages are transmitted through multiple routes however still some packet loss will degrade the performance. So, to provide high reliability of message delivery, an efficient retransmission mechanism is inevitable. Though, if the network uses conventional transport layer protocol such as TCP, it will suffer a spurious retransmission problem as TCP was originally not designed for the multipath environment. In this paper, we propose route discrimination for flooding-based routing to reduce spurious retransmission in UWSN to solve the limitation. The notion of ACK copies waiting time (ACWT) is utilized which is selectively updated based on the similarity of paths of transmission of ACK message copies. We also improved our previous solution that lacks flexibility to cope with dynamic link error characteristics. Through evaluation, we verified that our new scheme achieves the performance improvements of 14%~84% in terms of retransmission ratio compared to the previous research.
ISSN:1530-8669
1530-8677
DOI:10.1155/2020/8839541