Graph Neural Network-Driven Traffic Forecasting for the Connected Internet of Vehicles

Due to great advances in wireless communication, the connected Internet of vehicles (CIoVs) has become prevalent. Naturally, internal connections among active vehicles are an indispensable factor in traffic forecasting. Although many related research studies have been conducted in the past few years...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on network science and engineering Vol. 9; no. 5; pp. 3015 - 3027
Main Authors Zhang, Qin, Yu, Keping, Guo, Zhiwei, Garg, Sahil, Rodrigues, Joel J. P. C., Hassan, Mohammad Mehedi, Guizani, Mohsen
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.09.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Due to great advances in wireless communication, the connected Internet of vehicles (CIoVs) has become prevalent. Naturally, internal connections among active vehicles are an indispensable factor in traffic forecasting. Although many related research studies have been conducted in the past few years, they mainly designed and/or developed single forecasting models for traffic forecasting. Such models may show ideal performance in some scenarios but lack satisfactory robustness to dynamic scenario changes. To address this challenge, a graph neural network-driven traffic forecasting model for CIoVs is proposed in this work, which is denoted as Gra-TF. In this paper, we regard the dynamics of traffic data as a temporal evolution scenario. With the assistance of ensemble learning, three typical graph-level prediction methods are employed to construct an integrated and enhanced forecasting model. This design utilizes several methods to minimize uncertainty in CIoVs. Finally, we use a real-world dataset to build an experimental scenario for further assessment. Numerical results indicate that the proposed Gra-TF improves the prediction accuracy by 30% to 40% compared with several baseline methods.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2327-4697
2334-329X
DOI:10.1109/TNSE.2021.3126830