Scattering Studies for Two-Dimensional Exponential Correlation Textured Rough Surfaces Using Small-Slope Approximation Method

Two-dimensional exponential correlation rough surfaces characterized by textures are combined with the small-slope approximation (SSA) method to comparatively study electromagnetic (EM) scattering features of textured surfaces. The normalized copolarized radar cross section from 2-D exponential corr...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on geoscience and remote sensing Vol. 52; no. 9; pp. 5364 - 5373
Main Authors Wei, Peng-Bo, Zhang, Min, Sun, Rong-Qing, Yuan, Xiao-Feng
Format Journal Article
LanguageEnglish
Published New York IEEE 01.09.2014
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Two-dimensional exponential correlation rough surfaces characterized by textures are combined with the small-slope approximation (SSA) method to comparatively study electromagnetic (EM) scattering features of textured surfaces. The normalized copolarized radar cross section from 2-D exponential correlation rough surfaces characterized by stripe texture and block texture, respectively, is analyzed. Several numerical results show the effects of incident angle, texture angle, correlation length, and root-mean-square height on the copolarimetric scattering from the textured rough surface. The validity of the SSA method is verified by comparisons of theoretical value and measured data. Moreover, normalized amplitude distributions of backscattering fields from cells in a scene are studied through its statistical distribution and space correlation function, which are particularly useful for analysis and simulation of remote sensing images. Finally, based on the statistical distribution and space correlation function, the zero memory nonlinear transformation method is utilized to simulate EM scattering from very large scenes. The simulated scene coincides with the original one quite well.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0196-2892
1558-0644
DOI:10.1109/TGRS.2013.2288278