Glatiramer acetate‐specific T‐helper 1‐ and 2‐type cell lines produce BDNF: implications for multiple sclerosis therapy
The clinical effects of glatiramer acetate (GA), an approved therapy for multiple sclerosis, are thought to be largely mediated by a T‐helper 1 (TH1) to T‐helper 2 (TH2) shift of GA‐reactive T‐lymphocytes. Current theories propose that activated GA‐reactive TH2 cells penetrate the CNS, release anti‐...
Saved in:
Published in | Brain (London, England : 1878) Vol. 125; no. 11; pp. 2381 - 2391 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Oxford University Press
01.11.2002
Oxford Publishing Limited (England) |
Subjects | |
Online Access | Get full text |
ISSN | 0006-8950 1460-2156 1460-2156 |
DOI | 10.1093/brain/awf252 |
Cover
Loading…
Abstract | The clinical effects of glatiramer acetate (GA), an approved therapy for multiple sclerosis, are thought to be largely mediated by a T‐helper 1 (TH1) to T‐helper 2 (TH2) shift of GA‐reactive T‐lymphocytes. Current theories propose that activated GA‐reactive TH2 cells penetrate the CNS, release anti‐inflammatory cytokines such as interleukin (IL)‐4, IL‐5 and IL‐10, and thus inhibit neighbouring inflammatory cells by a mechanism termed ‘bystander suppression’. We demonstrate that both GA‐specific TH2 and TH1 cells produce the neurotrophin brain‐derived neurotrophic factor (BDNF). As the signal‐transducing receptor for BDNF, the full‐length 145 tyrosine kinase receptor (trk) B, is expressed in multiple sclerosis lesions, it is likely that the BDNF secreted by GA‐reactive TH2 and TH1 has neurotrophic effects in the multiple sclerosis target tissue. This may be an additional mechanism of action of GA, and may be relevant for therapies with altered peptide ligands in general. To demonstrate that GA‐reactive T cells produce BDNF, we selected four GA‐specific, long‐term T‐cell lines (TCLs), which were characterized according to their cytokine profile by intracellular double‐fluorescence flow cytometry. Three TCLs (isolated from a normal subject) had the phenotypes TH1, TH1/TH0, and TH0; the fourth, derived from a GA‐treated patient, had the phenotype TH2. To demonstrate BDNF production, we used a combination of RT‐PCR (reverse transcription‐polymerase chain reaction) and two specially designed techniques for BDNF protein detection: one was based on ELISA (enzyme‐linked immunosorbent assay) of supernatants from co‐cultures of GA‐specific TCLs plus GA‐pulsed antigen‐presenting cells, and the other on the direct intracellular staining of BDNF in individual T cells and flow cytometric analysis. The different assays and different TCLs yielded similar, consistent results. All four GA‐specific T‐cell lines, representing the major different TH phenotypes, could be stimulated to produce BDNF. |
---|---|
AbstractList | The clinical effects of glatiramer acetate (GA), an approved therapy for multiple sclerosis, are thought to be largely mediated by a T-helper 1 (TH1) to T-helper 2 (TH2) shift of GA-reactive T-lymphocytes. Current theories propose that activated GA-reactive TH2 cells penetrate the CNS, release anti-inflammatory cytokines such as interleukin (IL)-4, IL-5 and IL-10, and thus inhibit neighbouring inflammatory cells by a mechanism termed 'bystander suppression'. We demonstrate that both GA-specific TH2 and TH1 cells produce the neurotrophin brain-derived neurotrophic factor (BDNF). As the signal-transducing receptor for BDNF, the full-length 145 tyrosine kinase receptor (trk) B, is expressed in multiple sclerosis lesions, it is likely that the BDNF secreted by GA-reactive TH2 and TH1 has neurotrophic effects in the multiple sclerosis target tissue. This may be an additional mechanism of action of GA, and may be relevant for therapies with altered peptide ligands in general. To demonstrate that GA-reactive T cells produce BDNF, we selected four GA-specific, long-term T-cell lines (TCLs), which were characterized according to their cytokine profile by intracellular double-fluorescence flow cytometry. Three TCLs (isolated from a normal subject) had the phenotypes TH1, TH1/TH0, and TH0; the fourth, derived from a GA-treated patient, had the phenotype TH2. To demonstrate BDNF production, we used a combination of RT-PCR (reverse transcription-polymerase chain reaction) and two specially designed techniques for BDNF protein detection: one was based on ELISA (enzyme-linked immunosorbent assay) of supernatants from co-cultures of GA-specific TCLs plus GA-pulsed antigen-presenting cells, and the other on the direct intracellular staining of BDNF in individual T cells and flow cytometric analysis. The different assays and different TCLs yielded similar, consistent results. All four GA-specific T-cell lines, representing the major different TH phenotypes, could be stimulated to produce BDNF. The clinical effects of glatiramer acetate (GA), an approved therapy for multiple sclerosis, are thought to be largely mediated by a T‐helper 1 (TH1) to T‐helper 2 (TH2) shift of GA‐reactive T‐lymphocytes. Current theories propose that activated GA‐reactive TH2 cells penetrate the CNS, release anti‐inflammatory cytokines such as interleukin (IL)‐4, IL‐5 and IL‐10, and thus inhibit neighbouring inflammatory cells by a mechanism termed ‘bystander suppression’. We demonstrate that both GA‐specific TH2 and TH1 cells produce the neurotrophin brain‐derived neurotrophic factor (BDNF). As the signal‐transducing receptor for BDNF, the full‐length 145 tyrosine kinase receptor (trk) B, is expressed in multiple sclerosis lesions, it is likely that the BDNF secreted by GA‐reactive TH2 and TH1 has neurotrophic effects in the multiple sclerosis target tissue. This may be an additional mechanism of action of GA, and may be relevant for therapies with altered peptide ligands in general. To demonstrate that GA‐reactive T cells produce BDNF, we selected four GA‐specific, long‐term T‐cell lines (TCLs), which were characterized according to their cytokine profile by intracellular double‐fluorescence flow cytometry. Three TCLs (isolated from a normal subject) had the phenotypes TH1, TH1/TH0, and TH0; the fourth, derived from a GA‐treated patient, had the phenotype TH2. To demonstrate BDNF production, we used a combination of RT‐PCR (reverse transcription‐polymerase chain reaction) and two specially designed techniques for BDNF protein detection: one was based on ELISA (enzyme‐linked immunosorbent assay) of supernatants from co‐cultures of GA‐specific TCLs plus GA‐pulsed antigen‐presenting cells, and the other on the direct intracellular staining of BDNF in individual T cells and flow cytometric analysis. The different assays and different TCLs yielded similar, consistent results. All four GA‐specific T‐cell lines, representing the major different TH phenotypes, could be stimulated to produce BDNF. |
Author | Ziemssen, Tjalf Klinkert, Wolfgang E. F. Hohlfeld, Reinhard Neuhaus, Oliver Kümpfel, Tania |
Author_xml | – sequence: 1 givenname: Tjalf surname: Ziemssen fullname: Ziemssen, Tjalf organization: Department of Neuroimmunology, Max Planck Institute of Neurobiology, Martinsried, Institute for Clinical Neuroimmunology and Department of Neurology, Klinikum Grosshadern, Ludwig Maximilians University, Munich, Germany and Department of Neurology, Karl‐Franzens‐University Graz, Austria – sequence: 2 givenname: Tania surname: Kümpfel fullname: Kümpfel, Tania organization: Department of Neuroimmunology, Max Planck Institute of Neurobiology, Martinsried, Institute for Clinical Neuroimmunology and Department of Neurology, Klinikum Grosshadern, Ludwig Maximilians University, Munich, Germany and Department of Neurology, Karl‐Franzens‐University Graz, Austria – sequence: 3 givenname: Wolfgang E. F. surname: Klinkert fullname: Klinkert, Wolfgang E. F. organization: Department of Neuroimmunology, Max Planck Institute of Neurobiology, Martinsried, Institute for Clinical Neuroimmunology and Department of Neurology, Klinikum Grosshadern, Ludwig Maximilians University, Munich, Germany and Department of Neurology, Karl‐Franzens‐University Graz, Austria – sequence: 4 givenname: Oliver surname: Neuhaus fullname: Neuhaus, Oliver organization: Department of Neuroimmunology, Max Planck Institute of Neurobiology, Martinsried, Institute for Clinical Neuroimmunology and Department of Neurology, Klinikum Grosshadern, Ludwig Maximilians University, Munich, Germany and Department of Neurology, Karl‐Franzens‐University Graz, Austria – sequence: 5 givenname: Reinhard surname: Hohlfeld fullname: Hohlfeld, Reinhard organization: Department of Neuroimmunology, Max Planck Institute of Neurobiology, Martinsried, Institute for Clinical Neuroimmunology and Department of Neurology, Klinikum Grosshadern, Ludwig Maximilians University, Munich, Germany and Department of Neurology, Karl‐Franzens‐University Graz, Austria |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=13994170$$DView record in Pascal Francis |
BookMark | eNptkc1uFDEMxyPUSmxbbjxAhAQnps3HJLPhBoVtkZZyKVrEJcp6PWpK5oMkI9gTPALP2Cch7VY9VJxsyz__Zft_QPb6oUdCnnN2zJmRJ-vofH_ifrZCiSdkxmvNKsGV3iMzxpiu5kaxp-QgpWvGeC2FnpHfZ8FlH12HkTrA7DLe_PmbRgTfeqCXpbjCMJYuLyl1_YaKkuTtiBQwBBp8j4mOcdhMgPTd-4vFG-q7MXgoukOfaDtE2k0h-zEgTRAwDsknmq8wunF7RPZbFxI-u4-H5Mviw-XpebX8fPbx9O2yAqlMrhCFaZjYrDcgONeiQTlvjGiUbJ0WXLc113wODQesNayxdrKGVgtmwCkUIA_Jq51u2fTHhCnbzqfbA1yPw5SsYEpJxuYFfPEIvB6m2JfdLDeqFqrRpkAv7yGXwIU2uh58smP0nYtby6UxNW9Y4cSOg3J0itha8PnuL7lYFSxn9tY4e2ec3RlXhl4_GnrQ_T9e7XCfMv56YF38bnUjG2XPv36zn1bigq2WK7uQ_wB08LJA |
CODEN | BRAIAK |
CitedBy_id | crossref_primary_10_1007_s00415_005_5007_2 crossref_primary_10_17116_jnevro20191192228 crossref_primary_10_1016_j_jns_2005_03_010 crossref_primary_10_1038_npp_2012_263 crossref_primary_10_1016_S0165_6147_03_00028_2 crossref_primary_10_1016_j_expneurol_2006_04_028 crossref_primary_10_17116_jnevro2016116121145_151 crossref_primary_10_1016_j_autrev_2012_09_005 crossref_primary_10_1016_j_jns_2005_03_013 crossref_primary_10_1016_j_pediatrneurol_2016_05_010 crossref_primary_10_1016_j_it_2008_01_003 crossref_primary_10_3389_fimmu_2019_01564 crossref_primary_10_5114_ninp_2012_28265 crossref_primary_10_1007_s00109_005_0689_6 crossref_primary_10_1016_j_clineuro_2010_05_002 crossref_primary_10_1097_01_wco_0000169739_83793_e0 crossref_primary_10_1080_08923970802379819 crossref_primary_10_1080_08830180500379655 crossref_primary_10_1016_j_pediatrneurol_2016_11_006 crossref_primary_10_1016_j_jneuroim_2010_06_014 crossref_primary_10_1134_S2079059717080020 crossref_primary_10_1016_j_clim_2009_12_006 crossref_primary_10_1111_j_1600_0404_2008_01076_x crossref_primary_10_1007_s00415_007_1008_7 crossref_primary_10_1186_1742_2094_10_126 crossref_primary_10_1191_1352458505ms1234oa crossref_primary_10_7243_2054_989X_1_3 crossref_primary_10_1093_brain_awg140 crossref_primary_10_3390_cells10113177 crossref_primary_10_1016_j_ajpath_2011_09_037 crossref_primary_10_2147_NDT_S371483 crossref_primary_10_1016_S0168_0102_03_00217_7 crossref_primary_10_1212_WNL_0000000000003043 crossref_primary_10_1016_j_bpa_2010_11_001 crossref_primary_10_1016_j_expneurol_2016_02_023 crossref_primary_10_1111_j_1468_1331_2005_01084_x crossref_primary_10_1016_j_cccn_2004_10_002 crossref_primary_10_1007_s00005_012_0211_0 crossref_primary_10_1097_WCO_0b013e3283534a8a crossref_primary_10_1038_nrneurol_2016_21 crossref_primary_10_1517_17425255_2_6_1019 crossref_primary_10_59653_jhsmt_v1i02_277 crossref_primary_10_1517_14728214_10_4_797 crossref_primary_10_1016_j_neulet_2008_12_017 crossref_primary_10_1177_1099800414555411 crossref_primary_10_1016_j_jaut_2014_05_005 crossref_primary_10_1073_pnas_0402268101 crossref_primary_10_3390_jcm10040630 crossref_primary_10_1002_ana_20743 crossref_primary_10_3390_biom11030393 crossref_primary_10_1016_j_dscb_2024_100119 crossref_primary_10_1111_sji_12542 crossref_primary_10_1212_01_wnl_0000275234_43506_9b crossref_primary_10_1016_j_pjnns_2018_03_006 crossref_primary_10_1517_14656566_5_4_875 crossref_primary_10_2165_00063030_200519050_00003 crossref_primary_10_1002_med_21973 crossref_primary_10_1016_S0022_510X_03_00177_1 crossref_primary_10_1371_journal_pone_0121854 crossref_primary_10_4103_1110_161X_168156 crossref_primary_10_1016_j_jns_2006_10_024 crossref_primary_10_1007_s10072_007_0828_7 crossref_primary_10_1038_nm1620 crossref_primary_10_1016_j_neuroscience_2005_03_051 crossref_primary_10_1517_14728222_2012_714773 crossref_primary_10_1101_cshperspect_a029249 crossref_primary_10_1111_j_1755_5949_2010_00150_x crossref_primary_10_3389_fneur_2024_1385042 crossref_primary_10_1016_j_bbi_2012_02_011 crossref_primary_10_1177_1352458511399797 crossref_primary_10_2217_fnl_2019_0018 crossref_primary_10_1517_17425255_2013_811489 crossref_primary_10_1007_s12035_014_9074_1 crossref_primary_10_3389_fncel_2015_00055 crossref_primary_10_1007_s00115_015_4369_7 crossref_primary_10_1016_j_expneurol_2007_05_007 crossref_primary_10_1007_s00415_007_1007_8 crossref_primary_10_1089_jir_2010_0089 crossref_primary_10_1212_01_wnl_0000204235_81272_e2 crossref_primary_10_1146_annurev_immunol_23_021704_115707 crossref_primary_10_1016_j_jns_2006_05_071 crossref_primary_10_1016_S0896_8411_03_00091_X crossref_primary_10_1016_j_jneuroim_2006_04_024 crossref_primary_10_1016_j_neuroscience_2008_09_009 crossref_primary_10_1073_pnas_0502187102 crossref_primary_10_1080_08923973_2019_1566361 crossref_primary_10_1016_j_jneuroim_2009_04_004 crossref_primary_10_4049_jimmunol_1090138 crossref_primary_10_1002_jmr_628 crossref_primary_10_1016_j_expneurol_2006_04_015 crossref_primary_10_1586_14737175_5_4_451 crossref_primary_10_1073_pnas_0604681103 crossref_primary_10_1016_j_neulet_2008_03_097 crossref_primary_10_1212_WNL_0b013e3181c97e39 crossref_primary_10_1517_13543784_13_4_331 crossref_primary_10_1002_syn_20993 crossref_primary_10_1093_brain_awq179 crossref_primary_10_1007_s11481_010_9248_1 crossref_primary_10_1016_S1474_4422_05_70167_8 crossref_primary_10_1016_j_nurt_2007_08_002 crossref_primary_10_1016_j_jaut_2014_06_004 crossref_primary_10_1016_j_neulet_2006_07_043 crossref_primary_10_1097_00019052_200306000_00015 crossref_primary_10_1111_cei_12226 crossref_primary_10_3389_fphys_2016_00194 crossref_primary_10_1016_j_cnr_2006_06_001 crossref_primary_10_1016_j_pjnns_2018_08_001 crossref_primary_10_1016_j_jneuroim_2005_07_001 crossref_primary_10_1111_jon_12358 crossref_primary_10_1002_jnr_20176 crossref_primary_10_1007_s12031_009_9302_8 crossref_primary_10_1016_j_jns_2008_10_006 crossref_primary_10_1074_jbc_M702899200 crossref_primary_10_1016_j_mehy_2011_02_027 crossref_primary_10_1191_1352458504ms1026oa crossref_primary_10_1007_s11910_005_0053_9 crossref_primary_10_1016_j_mehy_2010_09_015 crossref_primary_10_1177_1352458506070146 crossref_primary_10_1016_j_neuroscience_2014_11_018 crossref_primary_10_1016_j_mehy_2007_04_014 crossref_primary_10_12968_bjnn_2008_4_4_29097 crossref_primary_10_1007_s11055_012_9571_5 crossref_primary_10_1586_14737175_2014_969241 crossref_primary_10_2174_1570159X22666240124114126 crossref_primary_10_4137_CMT_S2057 crossref_primary_10_1007_s00415_004_1504_y crossref_primary_10_1016_j_yrtph_2010_09_021 crossref_primary_10_1517_13543776_2015_1043267 crossref_primary_10_1016_j_schres_2014_04_040 crossref_primary_10_1073_pnas_2336171100 crossref_primary_10_1016_j_jneuroim_2010_01_009 crossref_primary_10_1007_s11481_015_9625_x crossref_primary_10_1007_s00702_013_1037_6 crossref_primary_10_2165_00023210_200519050_00001 crossref_primary_10_4049_jimmunol_174_9_5433 crossref_primary_10_1016_S0022_510X_09_71296_1 crossref_primary_10_1017_S0317167100053804 crossref_primary_10_3390_ijms131013713 crossref_primary_10_1177_1352458508089411 crossref_primary_10_1016_j_jns_2009_08_057 crossref_primary_10_1073_pnas_0509438102 crossref_primary_10_1016_j_ncl_2004_11_001 crossref_primary_10_1111_j_1582_4934_2011_01481_x crossref_primary_10_2165_11588120_000000000_00000 crossref_primary_10_1177_1756285611422108 crossref_primary_10_1146_annurev_immunol_032713_120227 crossref_primary_10_1007_s10571_023_01432_7 crossref_primary_10_1016_j_clineuro_2010_03_010 crossref_primary_10_1016_j_neuroscience_2019_06_006 crossref_primary_10_1016_S1359_6101_03_00071_6 crossref_primary_10_1111_ane_12712 crossref_primary_10_31857_S0006302923010192 crossref_primary_10_1007_s12035_007_8002_z crossref_primary_10_1016_j_clim_2006_10_011 crossref_primary_10_1073_pnas_0404874101 crossref_primary_10_1212_01_wnl_0000275230_20635_72 crossref_primary_10_1111_j_1527_3458_2007_00010_x crossref_primary_10_1212_WNL_0b013e31820db40f crossref_primary_10_1016_j_pneurobio_2016_02_001 crossref_primary_10_1007_s00415_007_1009_6 crossref_primary_10_1016_j_alcohol_2015_01_012 crossref_primary_10_1016_j_jneuroim_2012_01_011 crossref_primary_10_1007_s13311_015_0353_y crossref_primary_10_1016_j_brainres_2017_08_013 crossref_primary_10_1016_j_neuroscience_2008_12_013 crossref_primary_10_1134_S0006350923010086 crossref_primary_10_3390_ijms24098447 crossref_primary_10_1007_s00415_008_1005_5 crossref_primary_10_1016_j_jneuroim_2015_06_013 crossref_primary_10_2147_nedt_2007_3_2_259 crossref_primary_10_1007_s40263_015_0226_2 crossref_primary_10_1016_j_expneurol_2014_02_006 crossref_primary_10_1016_j_jneuroim_2011_06_010 crossref_primary_10_1016_j_clineuro_2008_03_021 crossref_primary_10_1016_j_jneuroim_2015_08_004 crossref_primary_10_3390_toxins2040856 crossref_primary_10_1016_j_jneuroim_2014_08_624 crossref_primary_10_1124_pharmrev_124_000927 crossref_primary_10_1111_j_1552_6569_2007_00206_x crossref_primary_10_1191_1352458503ms963oa crossref_primary_10_1016_j_jneuroim_2011_01_009 crossref_primary_10_1111_dgd_12072 crossref_primary_10_1002_jnr_21497 crossref_primary_10_1016_j_jneuroim_2008_04_033 crossref_primary_10_1016_j_autrev_2007_02_003 crossref_primary_10_1111_fcp_12202 crossref_primary_10_1586_ern_12_59 crossref_primary_10_1016_j_pharmthera_2008_10_001 crossref_primary_10_1186_s12014_023_09418_9 crossref_primary_10_1007_s00702_009_0272_3 crossref_primary_10_1191_1352458504ms1037oa crossref_primary_10_1016_j_pharmthera_2005_08_011 |
ContentType | Journal Article |
Copyright | 2003 INIST-CNRS Copyright Oxford University Press(England) Nov 2002 |
Copyright_xml | – notice: 2003 INIST-CNRS – notice: Copyright Oxford University Press(England) Nov 2002 |
DBID | BSCLL AAYXX CITATION IQODW 7QP 7QR 7TK 8FD FR3 K9. NAPCQ P64 |
DOI | 10.1093/brain/awf252 |
DatabaseName | Istex CrossRef Pascal-Francis Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Neurosciences Abstracts Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts |
DatabaseTitle | CrossRef Nursing & Allied Health Premium Technology Research Database ProQuest Health & Medical Complete (Alumni) Chemoreception Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts |
DatabaseTitleList | Neurosciences Abstracts Nursing & Allied Health Premium |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1460-2156 |
EndPage | 2391 |
ExternalDocumentID | 432372021 13994170 10_1093_brain_awf252 ark_67375_HXZ_MW2N0WLW_F |
GroupedDBID | --- -E4 -~X .2P .55 .GJ .I3 .XZ .ZR 0R~ 1CY 1TH 23N 2WC 354 3O- 4.4 41~ 482 48X 53G 5GY 5RE 5VS 5WA 5WD 6PF 70D AABZA AACZT AAGKA AAIMJ AAJKP AAJQQ AAMDB AAMVS AAOGV AAPGJ AAPNW AAPQZ AAPXW AAQQT AARHZ AAUAY AAUQX AAVAP AAVLN AAWDT AAWTL AAYJJ ABDFA ABDPE ABEJV ABEUO ABGNP ABIME ABIVO ABIXL ABJNI ABKDP ABLJU ABMNT ABNGD ABNHQ ABNKS ABPIB ABPQP ABPTD ABQLI ABQNK ABSMQ ABVGC ABWST ABXVV ABXZS ABZBJ ABZEO ACBNA ACFRR ACGFS ACIWK ACPQN ACPRK ACUFI ACUKT ACUTJ ACUTO ACVCV ACYHN ACZBC ADBBV ADEYI ADEZT ADGKP ADGZP ADHKW ADHZD ADIPN ADMTO ADNBA ADOCK ADQBN ADRTK ADVEK ADYVW ADZXQ AEGPL AEHUL AEJOX AEKPW AEKSI AELWJ AEMDU AEMQT AENEX AENZO AEPUE AETBJ AEWNT AFFNX AFFQV AFFZL AFGWE AFIYH AFOFC AFSHK AFXAL AFYAG AGINJ AGKEF AGKRT AGMDO AGORE AGQPQ AGQXC AGSYK AGUTN AHGBF AHMBA AHMMS AHXPO AI. AIJHB AJBYB AJDVS AJEEA AJNCP AKWXX ALMA_UNASSIGNED_HOLDINGS ALUQC ALXQX ANFBD APIBT APJGH APWMN AQDSO AQKUS ARIXL ASAOO ASPBG ATDFG ATGXG ATTQO AVNTJ AVWKF AXUDD AYOIW AZFZN BAWUL BAYMD BCRHZ BEYMZ BHONS BQDIO BR6 BSCLL BSWAC BTRTY BVRKM BZKNY C1A C45 CAG CDBKE COF CS3 CXTWN CZ4 DAKXR DFGAJ DIK DILTD DU5 D~K E3Z EBS EE~ EIHJH EJD ELUNK EMOBN ENERS F5P F9B FECEO FEDTE FHSFR FLUFQ FOEOM FOTVD FQBLK GAUVT GJXCC GX1 H13 H5~ HAR HVGLF HW0 HZ~ IOX J21 J5H JXSIZ KAQDR KBUDW KOP KQ8 KSI KSN L7B M-Z MBLQV MBTAY MHKGH ML0 MVM N4W N9A NGC NLBLG NOMLY NOYVH NTWIH NU- NVLIB O0~ O9- OAUYM OAWHX OBFPC OBOKY OCZFY ODMLO OHH OHT OJQWA OJZSN OK1 OPAEJ OVD OWPYF O~Y P2P PAFKI PB- PEELM PQQKQ Q1. Q5Y QBD R44 RD5 RIG RNI ROL ROX ROZ RUSNO RW1 RXO RZF RZO TCN TCURE TEORI TJX TLC TMA TR2 VH1 VVN W8F WH7 WOQ X7H X7M XJT XOL YAYTL YKOAZ YQJ YSK YXANX ZCG ZGI ZKB ZKX ZXP ~91 AAYXX CITATION ABQTQ IQODW M49 7QP 7QR 7TK 8FD FR3 K9. NAPCQ P64 |
ID | FETCH-LOGICAL-c359t-ee29702dbdc211627e38792753fa6216f41618c71ce46cbe4a34cf6209ca5e2c3 |
ISSN | 0006-8950 1460-2156 |
IngestDate | Fri Jul 11 16:28:07 EDT 2025 Mon Jun 30 07:19:12 EDT 2025 Wed Apr 02 07:24:47 EDT 2025 Thu Apr 24 22:53:12 EDT 2025 Tue Jul 01 02:39:56 EDT 2025 Tue Aug 05 16:50:03 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | Human Nervous system diseases Multiple sclerosis Th1 lymphocyte Reverse transcription Neuroprotective agent glatiramer acetate Inflammatory disease Polymerase chain reaction Chemotherapy Treatment Immunotherapy neuroprotection Central nervous system disease Th2 lymphocyte altered peptide ligand (APL) Brain derived neurotrophic factor Molecular biology Mechanism of action |
Language | English |
License | CC BY 4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c359t-ee29702dbdc211627e38792753fa6216f41618c71ce46cbe4a34cf6209ca5e2c3 |
Notes | Correspondence to: Dr R. Hohlfeld, Institute for Clinical Neuroimmunology, Klinikum Grosshadern, Ludwig Maximilians University, Marchioninistrasse 15, D‐81366 Munich, Germany E‐mail: hohlfeld@neuro.mpg.de ark:/67375/HXZ-MW2N0WLW-F local:awf252 istex:C24D19BA9321E1CBDB6434438C6307AF70E4C09F ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PQID | 195425769 |
PQPubID | 35133 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_20553008 proquest_journals_195425769 pascalfrancis_primary_13994170 crossref_citationtrail_10_1093_brain_awf252 crossref_primary_10_1093_brain_awf252 istex_primary_ark_67375_HXZ_MW2N0WLW_F |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2002-11-01 |
PublicationDateYYYYMMDD | 2002-11-01 |
PublicationDate_xml | – month: 11 year: 2002 text: 2002-11-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | Brain (London, England : 1878) |
PublicationTitleAlternate | Brain |
PublicationYear | 2002 |
Publisher | Oxford University Press Oxford Publishing Limited (England) |
Publisher_xml | – name: Oxford University Press – name: Oxford Publishing Limited (England) |
SSID | ssj0014326 |
Score | 2.229153 |
Snippet | The clinical effects of glatiramer acetate (GA), an approved therapy for multiple sclerosis, are thought to be largely mediated by a T‐helper 1 (TH1) to... The clinical effects of glatiramer acetate (GA), an approved therapy for multiple sclerosis, are thought to be largely mediated by a T-helper 1 (TH1) to... |
SourceID | proquest pascalfrancis crossref istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2381 |
SubjectTerms | altered peptide ligand (APL) APC = antigen presenting cell APL = altered peptide ligand BDNF = brain‐derived neurotrophic factor Biological and medical sciences ELISA = enzyme‐linked immunosorbent assay FACS = fluorescence‐activated cell sorter FITC = fluorescein isothiocyanate GA = glatiramer acetate glatiramer acetate IL = interleukin Immunomodulators immunotherapy MBP = myelin basic protein Medical sciences multiple sclerosis Multiple sclerosis and variants. Guillain barré syndrome and other inflammatory polyneuropathies. Leukoencephalitis Neurology neuroprotection PBMC = peripheral blood mononuclear cell Pharmacology. Drug treatments PMA = phorbol 12‐myristate 13‐acetate RT‐PCR = reverse transcription‐polymerase cell reaction TCL = T‐cell line TCR = T‐cell receptor TH1 = T‐helper 1 TH2 = T‐helper 2 trk = tyrosine‐receptor kinase |
Title | Glatiramer acetate‐specific T‐helper 1‐ and 2‐type cell lines produce BDNF: implications for multiple sclerosis therapy |
URI | https://api.istex.fr/ark:/67375/HXZ-MW2N0WLW-F/fulltext.pdf https://www.proquest.com/docview/195425769 https://www.proquest.com/docview/20553008 |
Volume | 125 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db5swFLWqVpr2Mu1Ty7p1ftj2gtyCAQN720fSamvTF6pEfUHG2G22lEQhUaf91_2X-dpAyNpN215QBAQD59i-vpx7L0KveJ6zQkWShD4XJPCjkOheFJOYqpzLMCoiYVS-Q3Z0Fnwah-OtrR8d1dJqme-L77fGlfwPqnqfxhWiZP8B2faieof-rfHVW42w3v4VxocgZAN11cLhAnSDkkDkJKh_nJRcyulcH_GI-UBAifG2gqPeAdOyAmlWoYF13n8cDsAxMOmKy0F92IoNK92unk0nlbPsJCFo0yLxSXlrZRDrboijuONuOJ_Iq6r2-qRf-FStvyVdzZWVDKS8nLSzxWf4xFwHFo1mU3XBywunvxYkD-Xqkq8MG0-nIDLZ8GPQOqCvXfXa-MiO862O8IIHqG-7udtmLGckTmza2n1ph--AuUQbMWxjfLeR1Q2Rve5w7dt6MTfmEZtjK18Y78yAXytq8-xuJuwenmaDs-PjLO2P082jxkAIfAo1gCDNwQ7VqxiYNw7HrQJJW6qmGmD7IHVchm77wLR8YNvdsJh2oPN_AwUvr3QnVrb6yg1DwlhH6X10r17W4HeWow_QliwfojsntXDjEbpeUxX_SlXcUBV7BOv3jy1VMVAVG6rimqoYqPoWd4mKNZ64ISpuiYproj5GZ4N--uGI1DU_iPDDZEmkpEnk0iIvBPU8RiPpx1FC9aJacUY9pmBBHovIEzJgIpcB9wOhGHUTwUNJhf8EbZezUj5FmKpQ0aIII6F4IHiRQDJKL5QsZ1HixayHnOa9ZqJOiA91WaaZFWb4mUEhsyj00Ov27LlNBPOb894YiNqT-OIriCejMDsan2cnIzp0R8ejbNBDexsYrq-q1wyBF7k9tNuAmtWDTpVBgkbwESQ99LI9qmcEgISXcraqMupCKTA3fvbH_--iu-te-BxtLxcr-ULb18t8z7D0Jxh91Tg |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Glatiramer+acetate-specific+T-helper+1-+and+2-type+cell+lines+produce+BDNF%3A+implications+for+multiple+sclerosis+therapy&rft.jtitle=Brain+%28London%2C+England+%3A+1878%29&rft.au=Ziemssen%2C+Tjalf&rft.au=Kumpfel%2C+Tania&rft.au=Klinkert%2C+Wolfgang+E+F&rft.au=Neuhaus%2C+Oliver&rft.date=2002-11-01&rft.pub=Oxford+Publishing+Limited+%28England%29&rft.issn=0006-8950&rft.eissn=1460-2156&rft.volume=125&rft.issue=11&rft.spage=2381&rft_id=info:doi/10.1093%2Fbrain%2Fawf252&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=432372021 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-8950&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-8950&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-8950&client=summon |