Glatiramer acetate‐specific T‐helper 1‐ and 2‐type cell lines produce BDNF: implications for multiple sclerosis therapy

The clinical effects of glatiramer acetate (GA), an approved therapy for multiple sclerosis, are thought to be largely mediated by a T‐helper 1 (TH1) to T‐helper 2 (TH2) shift of GA‐reactive T‐lymphocytes. Current theories propose that activated GA‐reactive TH2 cells penetrate the CNS, release anti‐...

Full description

Saved in:
Bibliographic Details
Published inBrain (London, England : 1878) Vol. 125; no. 11; pp. 2381 - 2391
Main Authors Ziemssen, Tjalf, Kümpfel, Tania, Klinkert, Wolfgang E. F., Neuhaus, Oliver, Hohlfeld, Reinhard
Format Journal Article
LanguageEnglish
Published Oxford Oxford University Press 01.11.2002
Oxford Publishing Limited (England)
Subjects
Online AccessGet full text
ISSN0006-8950
1460-2156
1460-2156
DOI10.1093/brain/awf252

Cover

Loading…
Abstract The clinical effects of glatiramer acetate (GA), an approved therapy for multiple sclerosis, are thought to be largely mediated by a T‐helper 1 (TH1) to T‐helper 2 (TH2) shift of GA‐reactive T‐lymphocytes. Current theories propose that activated GA‐reactive TH2 cells penetrate the CNS, release anti‐inflammatory cytokines such as interleukin (IL)‐4, IL‐5 and IL‐10, and thus inhibit neighbouring inflammatory cells by a mechanism termed ‘bystander suppression’. We demonstrate that both GA‐specific TH2 and TH1 cells produce the neurotrophin brain‐derived neurotrophic factor (BDNF). As the signal‐transducing receptor for BDNF, the full‐length 145 tyrosine kinase receptor (trk) B, is expressed in multiple sclerosis lesions, it is likely that the BDNF secreted by GA‐reactive TH2 and TH1 has neurotrophic effects in the multiple sclerosis target tissue. This may be an additional mechanism of action of GA, and may be relevant for therapies with altered peptide ligands in general. To demonstrate that GA‐reactive T cells produce BDNF, we selected four GA‐specific, long‐term T‐cell lines (TCLs), which were characterized according to their cytokine profile by intracellular double‐fluorescence flow cytometry. Three TCLs (isolated from a normal subject) had the phenotypes TH1, TH1/TH0, and TH0; the fourth, derived from a GA‐treated patient, had the phenotype TH2. To demonstrate BDNF production, we used a combination of RT‐PCR (reverse transcription‐polymerase chain reaction) and two specially designed techniques for BDNF protein detection: one was based on ELISA (enzyme‐linked immunosorbent assay) of supernatants from co‐cultures of GA‐specific TCLs plus GA‐pulsed antigen‐presenting cells, and the other on the direct intracellular staining of BDNF in individual T cells and flow cytometric analysis. The different assays and different TCLs yielded similar, consistent results. All four GA‐specific T‐cell lines, representing the major different TH phenotypes, could be stimulated to produce BDNF.
AbstractList The clinical effects of glatiramer acetate (GA), an approved therapy for multiple sclerosis, are thought to be largely mediated by a T-helper 1 (TH1) to T-helper 2 (TH2) shift of GA-reactive T-lymphocytes. Current theories propose that activated GA-reactive TH2 cells penetrate the CNS, release anti-inflammatory cytokines such as interleukin (IL)-4, IL-5 and IL-10, and thus inhibit neighbouring inflammatory cells by a mechanism termed 'bystander suppression'. We demonstrate that both GA-specific TH2 and TH1 cells produce the neurotrophin brain-derived neurotrophic factor (BDNF). As the signal-transducing receptor for BDNF, the full-length 145 tyrosine kinase receptor (trk) B, is expressed in multiple sclerosis lesions, it is likely that the BDNF secreted by GA-reactive TH2 and TH1 has neurotrophic effects in the multiple sclerosis target tissue. This may be an additional mechanism of action of GA, and may be relevant for therapies with altered peptide ligands in general. To demonstrate that GA-reactive T cells produce BDNF, we selected four GA-specific, long-term T-cell lines (TCLs), which were characterized according to their cytokine profile by intracellular double-fluorescence flow cytometry. Three TCLs (isolated from a normal subject) had the phenotypes TH1, TH1/TH0, and TH0; the fourth, derived from a GA-treated patient, had the phenotype TH2. To demonstrate BDNF production, we used a combination of RT-PCR (reverse transcription-polymerase chain reaction) and two specially designed techniques for BDNF protein detection: one was based on ELISA (enzyme-linked immunosorbent assay) of supernatants from co-cultures of GA-specific TCLs plus GA-pulsed antigen-presenting cells, and the other on the direct intracellular staining of BDNF in individual T cells and flow cytometric analysis. The different assays and different TCLs yielded similar, consistent results. All four GA-specific T-cell lines, representing the major different TH phenotypes, could be stimulated to produce BDNF.
The clinical effects of glatiramer acetate (GA), an approved therapy for multiple sclerosis, are thought to be largely mediated by a T‐helper 1 (TH1) to T‐helper 2 (TH2) shift of GA‐reactive T‐lymphocytes. Current theories propose that activated GA‐reactive TH2 cells penetrate the CNS, release anti‐inflammatory cytokines such as interleukin (IL)‐4, IL‐5 and IL‐10, and thus inhibit neighbouring inflammatory cells by a mechanism termed ‘bystander suppression’. We demonstrate that both GA‐specific TH2 and TH1 cells produce the neurotrophin brain‐derived neurotrophic factor (BDNF). As the signal‐transducing receptor for BDNF, the full‐length 145 tyrosine kinase receptor (trk) B, is expressed in multiple sclerosis lesions, it is likely that the BDNF secreted by GA‐reactive TH2 and TH1 has neurotrophic effects in the multiple sclerosis target tissue. This may be an additional mechanism of action of GA, and may be relevant for therapies with altered peptide ligands in general. To demonstrate that GA‐reactive T cells produce BDNF, we selected four GA‐specific, long‐term T‐cell lines (TCLs), which were characterized according to their cytokine profile by intracellular double‐fluorescence flow cytometry. Three TCLs (isolated from a normal subject) had the phenotypes TH1, TH1/TH0, and TH0; the fourth, derived from a GA‐treated patient, had the phenotype TH2. To demonstrate BDNF production, we used a combination of RT‐PCR (reverse transcription‐polymerase chain reaction) and two specially designed techniques for BDNF protein detection: one was based on ELISA (enzyme‐linked immunosorbent assay) of supernatants from co‐cultures of GA‐specific TCLs plus GA‐pulsed antigen‐presenting cells, and the other on the direct intracellular staining of BDNF in individual T cells and flow cytometric analysis. The different assays and different TCLs yielded similar, consistent results. All four GA‐specific T‐cell lines, representing the major different TH phenotypes, could be stimulated to produce BDNF.
Author Ziemssen, Tjalf
Klinkert, Wolfgang E. F.
Hohlfeld, Reinhard
Neuhaus, Oliver
Kümpfel, Tania
Author_xml – sequence: 1
  givenname: Tjalf
  surname: Ziemssen
  fullname: Ziemssen, Tjalf
  organization: Department of Neuroimmunology, Max Planck Institute of Neurobiology, Martinsried, Institute for Clinical Neuroimmunology and Department of Neurology, Klinikum Grosshadern, Ludwig Maximilians University, Munich, Germany and Department of Neurology, Karl‐Franzens‐University Graz, Austria
– sequence: 2
  givenname: Tania
  surname: Kümpfel
  fullname: Kümpfel, Tania
  organization: Department of Neuroimmunology, Max Planck Institute of Neurobiology, Martinsried, Institute for Clinical Neuroimmunology and Department of Neurology, Klinikum Grosshadern, Ludwig Maximilians University, Munich, Germany and Department of Neurology, Karl‐Franzens‐University Graz, Austria
– sequence: 3
  givenname: Wolfgang E. F.
  surname: Klinkert
  fullname: Klinkert, Wolfgang E. F.
  organization: Department of Neuroimmunology, Max Planck Institute of Neurobiology, Martinsried, Institute for Clinical Neuroimmunology and Department of Neurology, Klinikum Grosshadern, Ludwig Maximilians University, Munich, Germany and Department of Neurology, Karl‐Franzens‐University Graz, Austria
– sequence: 4
  givenname: Oliver
  surname: Neuhaus
  fullname: Neuhaus, Oliver
  organization: Department of Neuroimmunology, Max Planck Institute of Neurobiology, Martinsried, Institute for Clinical Neuroimmunology and Department of Neurology, Klinikum Grosshadern, Ludwig Maximilians University, Munich, Germany and Department of Neurology, Karl‐Franzens‐University Graz, Austria
– sequence: 5
  givenname: Reinhard
  surname: Hohlfeld
  fullname: Hohlfeld, Reinhard
  organization: Department of Neuroimmunology, Max Planck Institute of Neurobiology, Martinsried, Institute for Clinical Neuroimmunology and Department of Neurology, Klinikum Grosshadern, Ludwig Maximilians University, Munich, Germany and Department of Neurology, Karl‐Franzens‐University Graz, Austria
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=13994170$$DView record in Pascal Francis
BookMark eNptkc1uFDEMxyPUSmxbbjxAhAQnps3HJLPhBoVtkZZyKVrEJcp6PWpK5oMkI9gTPALP2Cch7VY9VJxsyz__Zft_QPb6oUdCnnN2zJmRJ-vofH_ifrZCiSdkxmvNKsGV3iMzxpiu5kaxp-QgpWvGeC2FnpHfZ8FlH12HkTrA7DLe_PmbRgTfeqCXpbjCMJYuLyl1_YaKkuTtiBQwBBp8j4mOcdhMgPTd-4vFG-q7MXgoukOfaDtE2k0h-zEgTRAwDsknmq8wunF7RPZbFxI-u4-H5Mviw-XpebX8fPbx9O2yAqlMrhCFaZjYrDcgONeiQTlvjGiUbJ0WXLc113wODQesNayxdrKGVgtmwCkUIA_Jq51u2fTHhCnbzqfbA1yPw5SsYEpJxuYFfPEIvB6m2JfdLDeqFqrRpkAv7yGXwIU2uh58smP0nYtby6UxNW9Y4cSOg3J0itha8PnuL7lYFSxn9tY4e2ec3RlXhl4_GnrQ_T9e7XCfMv56YF38bnUjG2XPv36zn1bigq2WK7uQ_wB08LJA
CODEN BRAIAK
CitedBy_id crossref_primary_10_1007_s00415_005_5007_2
crossref_primary_10_17116_jnevro20191192228
crossref_primary_10_1016_j_jns_2005_03_010
crossref_primary_10_1038_npp_2012_263
crossref_primary_10_1016_S0165_6147_03_00028_2
crossref_primary_10_1016_j_expneurol_2006_04_028
crossref_primary_10_17116_jnevro2016116121145_151
crossref_primary_10_1016_j_autrev_2012_09_005
crossref_primary_10_1016_j_jns_2005_03_013
crossref_primary_10_1016_j_pediatrneurol_2016_05_010
crossref_primary_10_1016_j_it_2008_01_003
crossref_primary_10_3389_fimmu_2019_01564
crossref_primary_10_5114_ninp_2012_28265
crossref_primary_10_1007_s00109_005_0689_6
crossref_primary_10_1016_j_clineuro_2010_05_002
crossref_primary_10_1097_01_wco_0000169739_83793_e0
crossref_primary_10_1080_08923970802379819
crossref_primary_10_1080_08830180500379655
crossref_primary_10_1016_j_pediatrneurol_2016_11_006
crossref_primary_10_1016_j_jneuroim_2010_06_014
crossref_primary_10_1134_S2079059717080020
crossref_primary_10_1016_j_clim_2009_12_006
crossref_primary_10_1111_j_1600_0404_2008_01076_x
crossref_primary_10_1007_s00415_007_1008_7
crossref_primary_10_1186_1742_2094_10_126
crossref_primary_10_1191_1352458505ms1234oa
crossref_primary_10_7243_2054_989X_1_3
crossref_primary_10_1093_brain_awg140
crossref_primary_10_3390_cells10113177
crossref_primary_10_1016_j_ajpath_2011_09_037
crossref_primary_10_2147_NDT_S371483
crossref_primary_10_1016_S0168_0102_03_00217_7
crossref_primary_10_1212_WNL_0000000000003043
crossref_primary_10_1016_j_bpa_2010_11_001
crossref_primary_10_1016_j_expneurol_2016_02_023
crossref_primary_10_1111_j_1468_1331_2005_01084_x
crossref_primary_10_1016_j_cccn_2004_10_002
crossref_primary_10_1007_s00005_012_0211_0
crossref_primary_10_1097_WCO_0b013e3283534a8a
crossref_primary_10_1038_nrneurol_2016_21
crossref_primary_10_1517_17425255_2_6_1019
crossref_primary_10_59653_jhsmt_v1i02_277
crossref_primary_10_1517_14728214_10_4_797
crossref_primary_10_1016_j_neulet_2008_12_017
crossref_primary_10_1177_1099800414555411
crossref_primary_10_1016_j_jaut_2014_05_005
crossref_primary_10_1073_pnas_0402268101
crossref_primary_10_3390_jcm10040630
crossref_primary_10_1002_ana_20743
crossref_primary_10_3390_biom11030393
crossref_primary_10_1016_j_dscb_2024_100119
crossref_primary_10_1111_sji_12542
crossref_primary_10_1212_01_wnl_0000275234_43506_9b
crossref_primary_10_1016_j_pjnns_2018_03_006
crossref_primary_10_1517_14656566_5_4_875
crossref_primary_10_2165_00063030_200519050_00003
crossref_primary_10_1002_med_21973
crossref_primary_10_1016_S0022_510X_03_00177_1
crossref_primary_10_1371_journal_pone_0121854
crossref_primary_10_4103_1110_161X_168156
crossref_primary_10_1016_j_jns_2006_10_024
crossref_primary_10_1007_s10072_007_0828_7
crossref_primary_10_1038_nm1620
crossref_primary_10_1016_j_neuroscience_2005_03_051
crossref_primary_10_1517_14728222_2012_714773
crossref_primary_10_1101_cshperspect_a029249
crossref_primary_10_1111_j_1755_5949_2010_00150_x
crossref_primary_10_3389_fneur_2024_1385042
crossref_primary_10_1016_j_bbi_2012_02_011
crossref_primary_10_1177_1352458511399797
crossref_primary_10_2217_fnl_2019_0018
crossref_primary_10_1517_17425255_2013_811489
crossref_primary_10_1007_s12035_014_9074_1
crossref_primary_10_3389_fncel_2015_00055
crossref_primary_10_1007_s00115_015_4369_7
crossref_primary_10_1016_j_expneurol_2007_05_007
crossref_primary_10_1007_s00415_007_1007_8
crossref_primary_10_1089_jir_2010_0089
crossref_primary_10_1212_01_wnl_0000204235_81272_e2
crossref_primary_10_1146_annurev_immunol_23_021704_115707
crossref_primary_10_1016_j_jns_2006_05_071
crossref_primary_10_1016_S0896_8411_03_00091_X
crossref_primary_10_1016_j_jneuroim_2006_04_024
crossref_primary_10_1016_j_neuroscience_2008_09_009
crossref_primary_10_1073_pnas_0502187102
crossref_primary_10_1080_08923973_2019_1566361
crossref_primary_10_1016_j_jneuroim_2009_04_004
crossref_primary_10_4049_jimmunol_1090138
crossref_primary_10_1002_jmr_628
crossref_primary_10_1016_j_expneurol_2006_04_015
crossref_primary_10_1586_14737175_5_4_451
crossref_primary_10_1073_pnas_0604681103
crossref_primary_10_1016_j_neulet_2008_03_097
crossref_primary_10_1212_WNL_0b013e3181c97e39
crossref_primary_10_1517_13543784_13_4_331
crossref_primary_10_1002_syn_20993
crossref_primary_10_1093_brain_awq179
crossref_primary_10_1007_s11481_010_9248_1
crossref_primary_10_1016_S1474_4422_05_70167_8
crossref_primary_10_1016_j_nurt_2007_08_002
crossref_primary_10_1016_j_jaut_2014_06_004
crossref_primary_10_1016_j_neulet_2006_07_043
crossref_primary_10_1097_00019052_200306000_00015
crossref_primary_10_1111_cei_12226
crossref_primary_10_3389_fphys_2016_00194
crossref_primary_10_1016_j_cnr_2006_06_001
crossref_primary_10_1016_j_pjnns_2018_08_001
crossref_primary_10_1016_j_jneuroim_2005_07_001
crossref_primary_10_1111_jon_12358
crossref_primary_10_1002_jnr_20176
crossref_primary_10_1007_s12031_009_9302_8
crossref_primary_10_1016_j_jns_2008_10_006
crossref_primary_10_1074_jbc_M702899200
crossref_primary_10_1016_j_mehy_2011_02_027
crossref_primary_10_1191_1352458504ms1026oa
crossref_primary_10_1007_s11910_005_0053_9
crossref_primary_10_1016_j_mehy_2010_09_015
crossref_primary_10_1177_1352458506070146
crossref_primary_10_1016_j_neuroscience_2014_11_018
crossref_primary_10_1016_j_mehy_2007_04_014
crossref_primary_10_12968_bjnn_2008_4_4_29097
crossref_primary_10_1007_s11055_012_9571_5
crossref_primary_10_1586_14737175_2014_969241
crossref_primary_10_2174_1570159X22666240124114126
crossref_primary_10_4137_CMT_S2057
crossref_primary_10_1007_s00415_004_1504_y
crossref_primary_10_1016_j_yrtph_2010_09_021
crossref_primary_10_1517_13543776_2015_1043267
crossref_primary_10_1016_j_schres_2014_04_040
crossref_primary_10_1073_pnas_2336171100
crossref_primary_10_1016_j_jneuroim_2010_01_009
crossref_primary_10_1007_s11481_015_9625_x
crossref_primary_10_1007_s00702_013_1037_6
crossref_primary_10_2165_00023210_200519050_00001
crossref_primary_10_4049_jimmunol_174_9_5433
crossref_primary_10_1016_S0022_510X_09_71296_1
crossref_primary_10_1017_S0317167100053804
crossref_primary_10_3390_ijms131013713
crossref_primary_10_1177_1352458508089411
crossref_primary_10_1016_j_jns_2009_08_057
crossref_primary_10_1073_pnas_0509438102
crossref_primary_10_1016_j_ncl_2004_11_001
crossref_primary_10_1111_j_1582_4934_2011_01481_x
crossref_primary_10_2165_11588120_000000000_00000
crossref_primary_10_1177_1756285611422108
crossref_primary_10_1146_annurev_immunol_032713_120227
crossref_primary_10_1007_s10571_023_01432_7
crossref_primary_10_1016_j_clineuro_2010_03_010
crossref_primary_10_1016_j_neuroscience_2019_06_006
crossref_primary_10_1016_S1359_6101_03_00071_6
crossref_primary_10_1111_ane_12712
crossref_primary_10_31857_S0006302923010192
crossref_primary_10_1007_s12035_007_8002_z
crossref_primary_10_1016_j_clim_2006_10_011
crossref_primary_10_1073_pnas_0404874101
crossref_primary_10_1212_01_wnl_0000275230_20635_72
crossref_primary_10_1111_j_1527_3458_2007_00010_x
crossref_primary_10_1212_WNL_0b013e31820db40f
crossref_primary_10_1016_j_pneurobio_2016_02_001
crossref_primary_10_1007_s00415_007_1009_6
crossref_primary_10_1016_j_alcohol_2015_01_012
crossref_primary_10_1016_j_jneuroim_2012_01_011
crossref_primary_10_1007_s13311_015_0353_y
crossref_primary_10_1016_j_brainres_2017_08_013
crossref_primary_10_1016_j_neuroscience_2008_12_013
crossref_primary_10_1134_S0006350923010086
crossref_primary_10_3390_ijms24098447
crossref_primary_10_1007_s00415_008_1005_5
crossref_primary_10_1016_j_jneuroim_2015_06_013
crossref_primary_10_2147_nedt_2007_3_2_259
crossref_primary_10_1007_s40263_015_0226_2
crossref_primary_10_1016_j_expneurol_2014_02_006
crossref_primary_10_1016_j_jneuroim_2011_06_010
crossref_primary_10_1016_j_clineuro_2008_03_021
crossref_primary_10_1016_j_jneuroim_2015_08_004
crossref_primary_10_3390_toxins2040856
crossref_primary_10_1016_j_jneuroim_2014_08_624
crossref_primary_10_1124_pharmrev_124_000927
crossref_primary_10_1111_j_1552_6569_2007_00206_x
crossref_primary_10_1191_1352458503ms963oa
crossref_primary_10_1016_j_jneuroim_2011_01_009
crossref_primary_10_1111_dgd_12072
crossref_primary_10_1002_jnr_21497
crossref_primary_10_1016_j_jneuroim_2008_04_033
crossref_primary_10_1016_j_autrev_2007_02_003
crossref_primary_10_1111_fcp_12202
crossref_primary_10_1586_ern_12_59
crossref_primary_10_1016_j_pharmthera_2008_10_001
crossref_primary_10_1186_s12014_023_09418_9
crossref_primary_10_1007_s00702_009_0272_3
crossref_primary_10_1191_1352458504ms1037oa
crossref_primary_10_1016_j_pharmthera_2005_08_011
ContentType Journal Article
Copyright 2003 INIST-CNRS
Copyright Oxford University Press(England) Nov 2002
Copyright_xml – notice: 2003 INIST-CNRS
– notice: Copyright Oxford University Press(England) Nov 2002
DBID BSCLL
AAYXX
CITATION
IQODW
7QP
7QR
7TK
8FD
FR3
K9.
NAPCQ
P64
DOI 10.1093/brain/awf252
DatabaseName Istex
CrossRef
Pascal-Francis
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Neurosciences Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
DatabaseTitle CrossRef
Nursing & Allied Health Premium
Technology Research Database
ProQuest Health & Medical Complete (Alumni)
Chemoreception Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
DatabaseTitleList Neurosciences Abstracts

Nursing & Allied Health Premium
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1460-2156
EndPage 2391
ExternalDocumentID 432372021
13994170
10_1093_brain_awf252
ark_67375_HXZ_MW2N0WLW_F
GroupedDBID ---
-E4
-~X
.2P
.55
.GJ
.I3
.XZ
.ZR
0R~
1CY
1TH
23N
2WC
354
3O-
4.4
41~
482
48X
53G
5GY
5RE
5VS
5WA
5WD
6PF
70D
AABZA
AACZT
AAGKA
AAIMJ
AAJKP
AAJQQ
AAMDB
AAMVS
AAOGV
AAPGJ
AAPNW
AAPQZ
AAPXW
AAQQT
AARHZ
AAUAY
AAUQX
AAVAP
AAVLN
AAWDT
AAWTL
AAYJJ
ABDFA
ABDPE
ABEJV
ABEUO
ABGNP
ABIME
ABIVO
ABIXL
ABJNI
ABKDP
ABLJU
ABMNT
ABNGD
ABNHQ
ABNKS
ABPIB
ABPQP
ABPTD
ABQLI
ABQNK
ABSMQ
ABVGC
ABWST
ABXVV
ABXZS
ABZBJ
ABZEO
ACBNA
ACFRR
ACGFS
ACIWK
ACPQN
ACPRK
ACUFI
ACUKT
ACUTJ
ACUTO
ACVCV
ACYHN
ACZBC
ADBBV
ADEYI
ADEZT
ADGKP
ADGZP
ADHKW
ADHZD
ADIPN
ADMTO
ADNBA
ADOCK
ADQBN
ADRTK
ADVEK
ADYVW
ADZXQ
AEGPL
AEHUL
AEJOX
AEKPW
AEKSI
AELWJ
AEMDU
AEMQT
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFNX
AFFQV
AFFZL
AFGWE
AFIYH
AFOFC
AFSHK
AFXAL
AFYAG
AGINJ
AGKEF
AGKRT
AGMDO
AGORE
AGQPQ
AGQXC
AGSYK
AGUTN
AHGBF
AHMBA
AHMMS
AHXPO
AI.
AIJHB
AJBYB
AJDVS
AJEEA
AJNCP
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALUQC
ALXQX
ANFBD
APIBT
APJGH
APWMN
AQDSO
AQKUS
ARIXL
ASAOO
ASPBG
ATDFG
ATGXG
ATTQO
AVNTJ
AVWKF
AXUDD
AYOIW
AZFZN
BAWUL
BAYMD
BCRHZ
BEYMZ
BHONS
BQDIO
BR6
BSCLL
BSWAC
BTRTY
BVRKM
BZKNY
C1A
C45
CAG
CDBKE
COF
CS3
CXTWN
CZ4
DAKXR
DFGAJ
DIK
DILTD
DU5
D~K
E3Z
EBS
EE~
EIHJH
EJD
ELUNK
EMOBN
ENERS
F5P
F9B
FECEO
FEDTE
FHSFR
FLUFQ
FOEOM
FOTVD
FQBLK
GAUVT
GJXCC
GX1
H13
H5~
HAR
HVGLF
HW0
HZ~
IOX
J21
J5H
JXSIZ
KAQDR
KBUDW
KOP
KQ8
KSI
KSN
L7B
M-Z
MBLQV
MBTAY
MHKGH
ML0
MVM
N4W
N9A
NGC
NLBLG
NOMLY
NOYVH
NTWIH
NU-
NVLIB
O0~
O9-
OAUYM
OAWHX
OBFPC
OBOKY
OCZFY
ODMLO
OHH
OHT
OJQWA
OJZSN
OK1
OPAEJ
OVD
OWPYF
O~Y
P2P
PAFKI
PB-
PEELM
PQQKQ
Q1.
Q5Y
QBD
R44
RD5
RIG
RNI
ROL
ROX
ROZ
RUSNO
RW1
RXO
RZF
RZO
TCN
TCURE
TEORI
TJX
TLC
TMA
TR2
VH1
VVN
W8F
WH7
WOQ
X7H
X7M
XJT
XOL
YAYTL
YKOAZ
YQJ
YSK
YXANX
ZCG
ZGI
ZKB
ZKX
ZXP
~91
AAYXX
CITATION
ABQTQ
IQODW
M49
7QP
7QR
7TK
8FD
FR3
K9.
NAPCQ
P64
ID FETCH-LOGICAL-c359t-ee29702dbdc211627e38792753fa6216f41618c71ce46cbe4a34cf6209ca5e2c3
ISSN 0006-8950
1460-2156
IngestDate Fri Jul 11 16:28:07 EDT 2025
Mon Jun 30 07:19:12 EDT 2025
Wed Apr 02 07:24:47 EDT 2025
Thu Apr 24 22:53:12 EDT 2025
Tue Jul 01 02:39:56 EDT 2025
Tue Aug 05 16:50:03 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords Human
Nervous system diseases
Multiple sclerosis
Th1 lymphocyte
Reverse transcription
Neuroprotective agent
glatiramer acetate
Inflammatory disease
Polymerase chain reaction
Chemotherapy
Treatment
Immunotherapy
neuroprotection
Central nervous system disease
Th2 lymphocyte
altered peptide ligand (APL)
Brain derived neurotrophic factor
Molecular biology
Mechanism of action
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c359t-ee29702dbdc211627e38792753fa6216f41618c71ce46cbe4a34cf6209ca5e2c3
Notes Correspondence to: Dr R. Hohlfeld, Institute for Clinical Neuroimmunology, Klinikum Grosshadern, Ludwig Maximilians University, Marchioninistrasse 15, D‐81366 Munich, Germany E‐mail: hohlfeld@neuro.mpg.de
ark:/67375/HXZ-MW2N0WLW-F
local:awf252
istex:C24D19BA9321E1CBDB6434438C6307AF70E4C09F
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 195425769
PQPubID 35133
PageCount 11
ParticipantIDs proquest_miscellaneous_20553008
proquest_journals_195425769
pascalfrancis_primary_13994170
crossref_citationtrail_10_1093_brain_awf252
crossref_primary_10_1093_brain_awf252
istex_primary_ark_67375_HXZ_MW2N0WLW_F
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2002-11-01
PublicationDateYYYYMMDD 2002-11-01
PublicationDate_xml – month: 11
  year: 2002
  text: 2002-11-01
  day: 01
PublicationDecade 2000
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Brain (London, England : 1878)
PublicationTitleAlternate Brain
PublicationYear 2002
Publisher Oxford University Press
Oxford Publishing Limited (England)
Publisher_xml – name: Oxford University Press
– name: Oxford Publishing Limited (England)
SSID ssj0014326
Score 2.229153
Snippet The clinical effects of glatiramer acetate (GA), an approved therapy for multiple sclerosis, are thought to be largely mediated by a T‐helper 1 (TH1) to...
The clinical effects of glatiramer acetate (GA), an approved therapy for multiple sclerosis, are thought to be largely mediated by a T-helper 1 (TH1) to...
SourceID proquest
pascalfrancis
crossref
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2381
SubjectTerms altered peptide ligand (APL)
APC = antigen presenting cell
APL = altered peptide ligand
BDNF = brain‐derived neurotrophic factor
Biological and medical sciences
ELISA = enzyme‐linked immunosorbent assay
FACS = fluorescence‐activated cell sorter
FITC = fluorescein isothiocyanate
GA = glatiramer acetate
glatiramer acetate
IL = interleukin
Immunomodulators
immunotherapy
MBP = myelin basic protein
Medical sciences
multiple sclerosis
Multiple sclerosis and variants. Guillain barré syndrome and other inflammatory polyneuropathies. Leukoencephalitis
Neurology
neuroprotection
PBMC = peripheral blood mononuclear cell
Pharmacology. Drug treatments
PMA = phorbol 12‐myristate 13‐acetate
RT‐PCR = reverse transcription‐polymerase cell reaction
TCL = T‐cell line
TCR = T‐cell receptor
TH1 = T‐helper 1
TH2 = T‐helper 2
trk = tyrosine‐receptor kinase
Title Glatiramer acetate‐specific T‐helper 1‐ and 2‐type cell lines produce BDNF: implications for multiple sclerosis therapy
URI https://api.istex.fr/ark:/67375/HXZ-MW2N0WLW-F/fulltext.pdf
https://www.proquest.com/docview/195425769
https://www.proquest.com/docview/20553008
Volume 125
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db5swFLWqVpr2Mu1Ty7p1ftj2gtyCAQN720fSamvTF6pEfUHG2G22lEQhUaf91_2X-dpAyNpN215QBAQD59i-vpx7L0KveJ6zQkWShD4XJPCjkOheFJOYqpzLMCoiYVS-Q3Z0Fnwah-OtrR8d1dJqme-L77fGlfwPqnqfxhWiZP8B2faieof-rfHVW42w3v4VxocgZAN11cLhAnSDkkDkJKh_nJRcyulcH_GI-UBAifG2gqPeAdOyAmlWoYF13n8cDsAxMOmKy0F92IoNK92unk0nlbPsJCFo0yLxSXlrZRDrboijuONuOJ_Iq6r2-qRf-FStvyVdzZWVDKS8nLSzxWf4xFwHFo1mU3XBywunvxYkD-Xqkq8MG0-nIDLZ8GPQOqCvXfXa-MiO862O8IIHqG-7udtmLGckTmza2n1ph--AuUQbMWxjfLeR1Q2Rve5w7dt6MTfmEZtjK18Y78yAXytq8-xuJuwenmaDs-PjLO2P082jxkAIfAo1gCDNwQ7VqxiYNw7HrQJJW6qmGmD7IHVchm77wLR8YNvdsJh2oPN_AwUvr3QnVrb6yg1DwlhH6X10r17W4HeWow_QliwfojsntXDjEbpeUxX_SlXcUBV7BOv3jy1VMVAVG6rimqoYqPoWd4mKNZ64ISpuiYproj5GZ4N--uGI1DU_iPDDZEmkpEnk0iIvBPU8RiPpx1FC9aJacUY9pmBBHovIEzJgIpcB9wOhGHUTwUNJhf8EbZezUj5FmKpQ0aIII6F4IHiRQDJKL5QsZ1HixayHnOa9ZqJOiA91WaaZFWb4mUEhsyj00Ov27LlNBPOb894YiNqT-OIriCejMDsan2cnIzp0R8ejbNBDexsYrq-q1wyBF7k9tNuAmtWDTpVBgkbwESQ99LI9qmcEgISXcraqMupCKTA3fvbH_--iu-te-BxtLxcr-ULb18t8z7D0Jxh91Tg
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Glatiramer+acetate-specific+T-helper+1-+and+2-type+cell+lines+produce+BDNF%3A+implications+for+multiple+sclerosis+therapy&rft.jtitle=Brain+%28London%2C+England+%3A+1878%29&rft.au=Ziemssen%2C+Tjalf&rft.au=Kumpfel%2C+Tania&rft.au=Klinkert%2C+Wolfgang+E+F&rft.au=Neuhaus%2C+Oliver&rft.date=2002-11-01&rft.pub=Oxford+Publishing+Limited+%28England%29&rft.issn=0006-8950&rft.eissn=1460-2156&rft.volume=125&rft.issue=11&rft.spage=2381&rft_id=info:doi/10.1093%2Fbrain%2Fawf252&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=432372021
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-8950&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-8950&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-8950&client=summon