Time-resolved opto-electronic properties of poly(3-hexylthiophene-2,5-diyl): Fullerene heterostructures detected by Kelvin force microscopy

Thin blend polymer films made of poly(3-hexylthiophene-2,5-diyl) (electron donor) and fullerene derivatives as electron acceptors ([6,6]-thienylC61 butyric acid methyl ester and [6,6]-thienylC71 butyric acid methyl ester) are prepared by the spin-coating technique on indium tin oxide covered glass s...

Full description

Saved in:
Bibliographic Details
Published inThin solid films Vol. 519; no. 2; pp. 836 - 840
Main Authors Čermák, Jan, Rezek, Bohuslav, Cimrová, Věra, Fejfar, Antonín, Purkrt, Adam, Vaněček, Milan, Kočka, Jan
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 01.11.2010
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Thin blend polymer films made of poly(3-hexylthiophene-2,5-diyl) (electron donor) and fullerene derivatives as electron acceptors ([6,6]-thienylC61 butyric acid methyl ester and [6,6]-thienylC71 butyric acid methyl ester) are prepared by the spin-coating technique on indium tin oxide covered glass substrates. Time-resolved photo-induced changes of surface potentials are detected by Kelvin force microscopy (KFM). Changes of surface potentials by 10–150 mV reveal different quality and kinetics of charge generation in the two blends in short (minutes) and long (hours) time periods. This is attributed to a combination of electron accumulation, trapping, and organic material degradation under ambient conditions. As KFM characterizes the blend films directly without metal contact layer, it reveals differences in the opto-electronic behavior of the blends, which are not detected by common photovoltaic cell characterization.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0040-6090
1879-2731
DOI:10.1016/j.tsf.2010.08.132