Research on Adaptive Cycle Engine Mode Transition Control Method
Mode transition is an important dynamic process of an adaptive cycle engine (ACE). In order to obtain a smooth mode transition process, the closed-loop controller is designed based on the strong robust augmented linear quadric regulator (ALQR) method, and with the objective of minimizing the thrust...
Saved in:
Published in | Energies (Basel) Vol. 17; no. 6; p. 1276 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.03.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Mode transition is an important dynamic process of an adaptive cycle engine (ACE). In order to obtain a smooth mode transition process, the closed-loop controller is designed based on the strong robust augmented linear quadric regulator (ALQR) method, and with the objective of minimizing the thrust fluctuation in the process of mode transition, an open-loop geometrical mechanism control schedules optimization method based on Bézier curves is proposed, so that the closed-loop control and the open-loop control can work in coordination. The simulation results at the subsonic cruise operating point and supersonic cruise operating point show that based on the optimized open-loop geometrical mechanism control schedules and the designed closed-loop ALQR control system, the ACE achieves fast and smooth geometrical mechanisms and engine output transition during the mode transition process with a maximum thrust fluctuation of 2.58%, which is much smaller than that of the traditional linear variation geometric mechanisms with a maximum 4.64% thrust fluctuation, which verifies the effectiveness of the proposed control method. |
---|---|
ISSN: | 1996-1073 1996-1073 |
DOI: | 10.3390/en17061276 |