Secret-Key Exchange Through Synchronization of Randomized Chaotic Oscillators Aided by Logistic Hash Function

We have developed a method of secret-key exchange assisted by a secure hash algorithm for a stream cipher based on the augmented Lorenz map as a high-dimensional chaotic map. Two legitimate users are assumed to possess chaotic oscillators subject to the original Lorenz equations to exchange randomiz...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on circuits and systems. I, Regular papers Vol. 69; no. 4; pp. 1655 - 1667
Main Authors Onuki, Koshiro, Cho, Kenichiro, Horio, Yoshihiko, Miyano, Takaya
Format Journal Article
LanguageEnglish
Published New York IEEE 01.04.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We have developed a method of secret-key exchange assisted by a secure hash algorithm for a stream cipher based on the augmented Lorenz map as a high-dimensional chaotic map. Two legitimate users are assumed to possess chaotic oscillators subject to the original Lorenz equations to exchange randomized chaotic signals. The oscillators achieve perfect synchronization and generate a sequence of binary numbers to be shared as the secret key. The users, as well as an eavesdropper, cannot estimate the synchronization error because of the randomization of chaotic signals. Nevertheless, only the legitimate users have high confidence in sharing the secret key because of the dynamical stability of the synchronization process. The users can confirm the sharing of the secret key by exchanging the hash values of the keys that are generated by a secure hash algorithm based on the logistic map. We discuss the performance of our method with reference to the results of numerical experiments.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1549-8328
1558-0806
DOI:10.1109/TCSI.2022.3140762