Artificial Hummingbird Optimization Algorithm With Hierarchical Deep Learning for Traffic Management in Intelligent Transportation Systems

Intelligent Transportation Systems (ITS) make use of advanced technologies to optimize interurban and urban traffic, reduce congestion and enhance overall traffic flow. Deep learning (DL) approaches can be widely used for traffic flow monitoring in the ITS. This manuscript introduces the Artificial...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 12; pp. 17596 - 17603
Main Authors Alruban, Abdulrahman, Mengash, Hanan Abdullah, Eltahir, Majdy M., Almalki, Nabil Sharaf, Mahmud, Ahmed, Assiri, Mohammed
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Intelligent Transportation Systems (ITS) make use of advanced technologies to optimize interurban and urban traffic, reduce congestion and enhance overall traffic flow. Deep learning (DL) approaches can be widely used for traffic flow monitoring in the ITS. This manuscript introduces the Artificial Hummingbird Optimization Algorithm with Hierarchical Deep Learning for Traffic Management (AHOA-HDLTM) technique in the ITS environment. The purpose of the AHOA-HDLTM technique is to predict traffic flow levels in smart cities, enabling effective traffic management. Primarily, the AHOA-HDLTM model involves data preprocessing and an Improved Salp Swarm Algorithm (ISSA) for feature selection. For the prediction of traffic flow, the Hierarchical Extreme Learning Machine (HELM) model can be used. The HELM extracts complex features and patterns, with an additional Artificial Hummingbird Optimization Algorithm (AHOA)-based hyperparameter selection process to enhance predictive outcomes. The simulation result analysis under different traffic data demonstrates the better performance of the AHOA-HDLTM technique over existing models. The hierarchical structure of the HELM model along with AHOA-based hyperparameter tuning helps to accomplish enhanced prediction performance. The AHOA-HDLTM technique presents a robust solution for traffic management in ITS, showcasing enhanced performance in forecasting traffic patterns and congestion. The AHOA-HDLTM technique can be used in various smart cities and urban regions. Its abilities in real-time traffic flow prediction can be helpful in the design of efficient, sustainable, and resilient transportation networks.
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2023.3349032