Toward a Robust Estimation of Respiratory Rate Using Cardiovascular Biomarkers: Robustness Analysis Under Pain Stimulation

Respiration can modulate the cardiovascular system through the autonomic nervous system (ANS), deriving numerous methods for monitoring respiration based on cardiovascular biomarkers. However, the sensitivity of the ANS to environmental changes can negatively affect these methods, which suggests the...

Full description

Saved in:
Bibliographic Details
Published inIEEE sensors journal Vol. 22; no. 10; pp. 9904 - 9913
Main Authors Xu, Ziqiang, Sakagawa, Toshiki, Furui, Akira, Jomyo, Shumma, Morita, Masanori, Ando, Masamichi, Tsuji, Toshio
Format Journal Article
LanguageEnglish
Published New York IEEE 15.05.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Respiration can modulate the cardiovascular system through the autonomic nervous system (ANS), deriving numerous methods for monitoring respiration based on cardiovascular biomarkers. However, the sensitivity of the ANS to environmental changes can negatively affect these methods, which suggests the necessity to evaluate their performance in estimating respiratory rate (RR). This paper aims to propose a method for robust estimation of RR using a biodegradable piezoelectric sensor by analyzing the robustness differences of these biomarkers under pain stimulation. In an electrocutaneous stimulus experiment conducted with 15 participants, arterial pulse waves near the elbow and wrist were measured, as well as the electrocardiogram and fingertip photoplethysmogram. The robustness of six biomarkers was quantified using respiratory quality index (RQI) and mean absolute percentage error (MAPE). Heart rate derived from the arterial pulse wave near the elbow achieves the best robustness ( RQI <inline-formula> <tex-math notation="LaTeX">=85.67 </tex-math></inline-formula>±12.84 %, MAPE <inline-formula> <tex-math notation="LaTeX">=2.22 </tex-math></inline-formula>±1.81 %) of all biomarkers, whereas pulse wave velocity (PWV) from the elbow to the wrist performs best ( RQI <inline-formula> <tex-math notation="LaTeX">=70.39 </tex-math></inline-formula>±12.15 %, MAPE <inline-formula> <tex-math notation="LaTeX">=3.47 </tex-math></inline-formula>±1.69 %) of the three biomarkers of PWV. Therefore, the robustness of biomarkers varies, as does the same biomarker measured at different sites. Our results reveal the heterogeneity of respiratory modulation on the cardiovascular system and demonstrate the robustness of the biomarkers of the arterial pulse wave near the elbow in estimating RR. This study can help smart wearables perfect respiratory monitoring and contribute a robust method for respiratory monitoring using a biodegradable piezoelectric sensor.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1530-437X
1558-1748
DOI:10.1109/JSEN.2022.3165880