High-energy asymmetric supercapacitor based on petal-shaped MnO2 nanosheet and carbon nanotube-embedded polyacrylonitrile-based carbon nanofiber working at 2 V in aqueous neutral electrolyte

An asymmetric supercapacitor (ASC) uses very thin petal-shaped MnO2 nanosheets as the positive electrode and a network of carbon nanotube-embedded polyacrylonitrile-based carbon nanofibers (CNT-CNF electrodes) as the negative electrode. It has a high specific capacitance and a high specific energy d...

Full description

Saved in:
Bibliographic Details
Published inJournal of power sources Vol. 249; pp. 1 - 8
Main Authors WANG, Chen-Hao, HSU, Hsin-Cheng, HU, Jin-Hao
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier 01.03.2014
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:An asymmetric supercapacitor (ASC) uses very thin petal-shaped MnO2 nanosheets as the positive electrode and a network of carbon nanotube-embedded polyacrylonitrile-based carbon nanofibers (CNT-CNF electrodes) as the negative electrode. It has a high specific capacitance and a high specific energy density in 0.5 M Na2SO4. An assembled MnO2//CNT-CNF ASC is operated reversibly at a high cell voltage of 2.0 V and exhibits a high specific capacitance of 93.99 F g-1 and an excellent energy density of 52.22 Wh kg-1, which is better than those of ASCs that are based on MnO2//carbon, which can be found in the literature. The MnO2//CNT-CNF ASC has superior cycling stability with 92% retention of initial specific capacitance after 2000 cycles.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0378-7753
1873-2755
DOI:10.1016/j.jpowsour.2013.10.068