A Comprehensive Multimodal Humanoid System for Personality Assessment Based on the Big Five Model

Personality analysis allows the experts to get insights into an individual's conduct, vulnerabilities, and prospective capabilities. Some common methods employed for personality prediction include text analysis, social media data, facial expressions, and emotional speech extraction. Recently, s...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 12; pp. 84261 - 84272
Main Authors Jaffar, Anum, Ali, Sara, Fahad Iqbal, Khawaja, Ayaz, Yasar, Ansari, Ali R., Fayyaz, Muhammad A. B., Nawaz, Raheel
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Personality analysis allows the experts to get insights into an individual's conduct, vulnerabilities, and prospective capabilities. Some common methods employed for personality prediction include text analysis, social media data, facial expressions, and emotional speech extraction. Recently, some studies have utilized the big five model to predict personality traits using non-verbal cues (gaze score, body motion, head motion). However, these studies mostly target only three aspects of the big five mode. None of the studies so far have used non-verbal cues to target all five traits (extraversion, openness, neuroticism, agreeableness, and conscientiousness) of the Big Five model. In this paper, we propose a multi-modal system that predicts all five personality traits of the Big Five model using non-verbal cues (facial expressions, head poses, body poses), 44-item Big Five Inventory (BFI) questionnaire, and expert analysis. The facial expression module utilizes the Face Emotion Recognition Plus (FER+) dataset trained with Convolution Neural Network (CNN) model achieving 95.14% accuracy. Evaluating 16 subjects in verbal interaction with humanoid robot NAO, we combined questionnaire feedback, human-robot interaction data, and expert perspectives to deduce their Big Five traits. Findings reveal 100% accuracy in personality prediction via expert insights and the system, and 75% for the questionnaire-based approach.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2024.3412931