Multi-Agent Deep Reinforcement Learning-Based Trajectory Planning for Multi-UAV Assisted Mobile Edge Computing

An unmanned aerial vehicle (UAV)-aided mobile edge computing (MEC) framework is proposed, where several UAVs having different trajectories fly over the target area and support the user equipments (UEs) on the ground. We aim to jointly optimize the geographical fairness among all the UEs, the fairnes...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on cognitive communications and networking Vol. 7; no. 1; pp. 73 - 84
Main Authors Wang, Liang, Wang, Kezhi, Pan, Cunhua, Xu, Wei, Aslam, Nauman, Hanzo, Lajos
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.03.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:An unmanned aerial vehicle (UAV)-aided mobile edge computing (MEC) framework is proposed, where several UAVs having different trajectories fly over the target area and support the user equipments (UEs) on the ground. We aim to jointly optimize the geographical fairness among all the UEs, the fairness of each UAV' UE-load and the overall energy consumption of UEs. The above optimization problem includes both integer and continues variables and it is challenging to solve. To address the above problem, a multi-agent deep reinforcement learning based trajectory control algorithm is proposed for managing the trajectory of each UAV independently, where the popular Multi-Agent Deep Deterministic Policy Gradient (MADDPG) method is applied. Given the UAVs' trajectories, a low-complexity approach is introduced for optimizing the offloading decisions of UEs. We show that our proposed solution has considerable performance over other traditional algorithms, both in terms of the fairness for serving UEs, fairness of UE-load at each UAV and energy consumption for all the UEs.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2332-7731
2332-7731
DOI:10.1109/TCCN.2020.3027695