A hybrid AHP-GA method for metadata-based learning object evaluation
A wide variety of demand in e-learning and web-based learning caused a new approach in e-content presentation. In order to accomplish these demands, learning object repositories (LORs) were developed. LORs have many learning objects (LOs) that are used to produce different types of e-content. When t...
Saved in:
Published in | Neural computing & applications Vol. 31; no. Suppl 1; pp. 671 - 681 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
London
Springer London
01.01.2019
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0941-0643 1433-3058 |
DOI | 10.1007/s00521-017-3023-7 |
Cover
Summary: | A wide variety of demand in e-learning and web-based learning caused a new approach in e-content presentation. In order to accomplish these demands, learning object repositories (LORs) were developed. LORs have many learning objects (LOs) that are used to produce different types of e-content. When there are many LOs in LORs, the evaluation and selection of them become a subjective and time-consuming process. Thus, selecting the most suitable and best qualified LO is considered as a multi-criteria decision-making (MCDM) problem. In this study, a hybrid analytic hierarchy process genetic algorithm (AHP-GA) method was developed for the evaluation of LOs from web-based Intelligent Learning Object Framework (Zonesa) LOR. This proposed hybrid system was used in a real case study and the results demonstrated that the proposed system can be used effectively by both users and machines to produce content by the help of LO metadata. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 0941-0643 1433-3058 |
DOI: | 10.1007/s00521-017-3023-7 |