Strict Lyapunov Functions for the Super-Twisting Algorithm
A method to construct a family of strict Lyapunov functions, i.e., with negative definite derivative, for the super-twisting algorithm, without or with perturbations, is provided. This second order sliding modes algorithm is widely used to design controllers, observers and exact differentiators. The...
Saved in:
Published in | IEEE transactions on automatic control Vol. 57; no. 4; pp. 1035 - 1040 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York, NY
IEEE
01.04.2012
Institute of Electrical and Electronics Engineers |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | A method to construct a family of strict Lyapunov functions, i.e., with negative definite derivative, for the super-twisting algorithm, without or with perturbations, is provided. This second order sliding modes algorithm is widely used to design controllers, observers and exact differentiators. The proposed Lyapunov functions ascertain finite time convergence, provide an estimate of the convergence time, and ensure the robustness of the finite-time or ultimate boundedness for a class of perturbations wider than the classical ones for this algorithm. Since the Lyapunov functions and their derivatives are quadratic forms, the operation with them is as simple as for linear time invariant systems. |
---|---|
ISSN: | 0018-9286 1558-2523 |
DOI: | 10.1109/TAC.2012.2186179 |