Fabrication, Structure Characterization, and Performance Testing of Piezoelectret-Film Sensors for Recording Body Motion
During muscle contractions, radial-force distributions are generated on muscle surfaces due to muscle-volume changes, from which the corresponding body motions can be recorded by means of so-called force myography (FMG). Piezo-or ferroelectrets are flexible piezoelectric materials with attractive ma...
Saved in:
Published in | IEEE sensors journal Vol. 18; no. 1; pp. 401 - 412 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.01.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | During muscle contractions, radial-force distributions are generated on muscle surfaces due to muscle-volume changes, from which the corresponding body motions can be recorded by means of so-called force myography (FMG). Piezo-or ferroelectrets are flexible piezoelectric materials with attractive materials and sensing properties. In addition to several other applications, they are suitable for detecting force variations by means of wearable devices. In this paper, we prepared piezoelectrets from cellular polypropylene films by optimizing the fabrication procedures, and developed an FMG-recording system based on piezoelectret sensors. Different hand and wrist movements were successfully detected on able-bodied subjects with the FMG system. The FMG patterns were evaluated and identified by means of linear discriminant analysis and artificial neural network algorithms, and average motion-classification accuracies of 96.1% and 94.8%, respectively, were obtained. This paper demonstrates the feasibility of using piezoelectret-film sensors for FMG and may thus lead to alternative methods for detecting body motion and to related applications, e.g., in biomedical engineering or structural-health monitoring. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 1530-437X 1558-1748 |
DOI: | 10.1109/JSEN.2017.2766663 |