Toward Satellite-Based Land Cover Classification Through Optimum-Path Forest

Land cover classification has been paramount in the last years. Since the amount of information acquired by satellite on-board imaging systems has increased, there is a need for automatic tools that can tackle such problem. Despite the fact that one can find several works in the literature, we propo...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on geoscience and remote sensing Vol. 52; no. 10; pp. 6075 - 6085
Main Authors Pisani, Rodrigo Jose, Mizobe Nakamura, Rodrigo Yuji, Setti Riedel, Paulina, Lopes Zimback, Celia Regina, Xavier Falcao, Alexandre, Papa, Joao Paulo
Format Journal Article
LanguageEnglish
Published New York IEEE 01.10.2014
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Land cover classification has been paramount in the last years. Since the amount of information acquired by satellite on-board imaging systems has increased, there is a need for automatic tools that can tackle such problem. Despite the fact that one can find several works in the literature, we propose a novel methodology for land cover classification by means of the optimum-path forest (OPF) framework, which has never been applied to this context up to date. Experiments were conducted in supervised and unsupervised situations against some state-of-the-art pattern recognition techniques, such as support vector machines, Bayesian classifier, k-means, and mean shift. We had shown that supervised OPF can outperform such approaches, being much faster than all. In regard to clustering techniques, all classifiers have achieved similar results.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0196-2892
1558-0644
DOI:10.1109/TGRS.2013.2294762