Weakly Supervised Learning Based on Coupled Convolutional Neural Networks for Aircraft Detection

Aircraft detection from very high resolution (VHR) remote sensing images has been drawing increasing interest in recent years due to the successful civil and military applications. However, several challenges still exist: 1) extracting the high-level features and the hierarchical feature representat...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on geoscience and remote sensing Vol. 54; no. 9; pp. 5553 - 5563
Main Authors Zhang, Fan, Du, Bo, Zhang, Liangpei, Xu, Miaozhong
Format Journal Article
LanguageEnglish
Published New York IEEE 01.09.2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Aircraft detection from very high resolution (VHR) remote sensing images has been drawing increasing interest in recent years due to the successful civil and military applications. However, several challenges still exist: 1) extracting the high-level features and the hierarchical feature representations of the objects is difficult; 2) manual annotation of the objects in large image sets is generally expensive and sometimes unreliable; and 3) locating objects within such a large image is difficult and time consuming. In this paper, we propose a weakly supervised learning framework based on coupled convolutional neural networks (CNNs) for aircraft detection, which can simultaneously solve these problems. We first develop a CNN-based method to extract the high-level features and the hierarchical feature representations of the objects. We then employ an iterative weakly supervised learning framework to automatically mine and augment the training data set from the original image. We propose a coupled CNN method, which combines a candidate region proposal network and a localization network to extract the proposals and simultaneously locate the aircraft, which is more efficient and accurate, even in large-scale VHR images. In the experiments, the proposed method was applied to three challenging high-resolution data sets: the Sydney International Airport data set, the Tokyo Haneda Airport data set, and the Berlin Tegel Airport data set. The extensive experimental results confirm that the proposed method can achieve a higher detection accuracy than the other methods.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0196-2892
1558-0644
DOI:10.1109/TGRS.2016.2569141